overmoolding insert molding

In the plastics industry, injection molding is a significant process that is used to produce a large volume of plastic parts or products. This technique involves the use of a mold, usually of steel-made metal, that has an interior pattern that resembles the intended design of the part or product. The material, usually inserted after melting into a liquified or molten hot plastic state, is forced into a die cavity, eventually cooled, and then released to create thousands of similar pieces by applying high pressure.

Due to high production accuracy, almost all large-scale plastic products on the market today are fabricated through injection molding techniques. The process has many benefits, such as low cost per part production, short time per part manufacturing, accommodating several materials, and high accuracy of the final part meeting exact tolerance requirements.

These include overmolding vs. insert molding techniques. Although both are interchangeably used, there are clear distinctions between them. This blog post specifically provides key details about two techniques: overmold vs. insert mold processes, by highlighting their differences, applications, and situations to choose between the two.

вставное молдинг

Insert Molding: How Does It Work?

Both overmolding and insert molding techniques involve injection molding. In the process, metal parts are placed into a mold cavity, and then plastic is injected. These metal inserts are placed in the mold by hand or with the help of industrial robots used in automated processes. Once the mold is in position, the mold is closed, and a plastic material is injected over the metal inserts to create a single, unbroken part.

These features enable easy assembling and disassembling of the parts without any effect on the quality or appearance. For instance, heat-set threaded inserts are used in the plastic parts to reduce the likelihood of thread damage during assembly.

In addition, insert molding may sometimes even reduce the need for secondary fasteners. This technique involves the direct incorporation of required metal components into the mold to form a strong, single component that increases the mechanical stability of the part and minimizes the chances of part breakage. If you want to know more about insert molding, please go to what is insert molding страница.

Why should one opt for Insert Molding?

Insert molding is an adaptive manufacturing process to produce high-strength plastic components. Let’s discuss its extensive use cases:

Reduced Assembly Costs: An injection molding machine is capable of producing thousands of parts in a minimal time frame, and this makes it economical for large batch parts production. In contrast to Обработка на станках с ЧПУ, sheet metal fabrication, or 3D additive manufacturing techniques, where the assembly can become a significant problem, insert molding can minimize or even remove the need for additional assembly and tooling requirements, which will lead to further cost optimization of projects.

Enhanced Part Performance: Plastic parts are typically not as durable as their metal counterparts, but plastic has its benefits, including being cheaper, easier to mold into different shapes, and lighter in weight. Insert-molded products normally entail durability due to the combination of plastic (a substrate on which metal is inserted) and metals (insert both materials). This ensures that the intended part being inserted has the necessary strength and stiffness. Moreover, the plastic matrix helps reduce the overall weight of parts. Furthermore, insert molding imparts in parts the ability to resist cyclical loads and other loads.

Disadvantages of Insert Molding

Despite its several benefits, insert molding also comes with certain limits that product manufacturers must consider: These common drawbacks include;

insert molding vs overmolding

Multiple Manufacturing Technologies: Insert molding may need to be done in two phases in general. Metal-forming processes such as CNC machining may be used when manufacturing custom-designed inserts rather than off-the-shelf parts. These methods are generally costlier per part than fully injection-molded processes. While it is possible to reduce the cost of manufacturing metal inserts by employing techniques such as metal die casting or metal injection molding (MIM), Despite this, the cost of manufacturing parts with metal inserts is still higher than that of parts made entirely out of plastic.

Increased Part Complexity: When producing products that have to have metal inserts made to order, it’s essential to have a deep understanding of both metal and plastic manufacturing. Product designers must know the DFM rules of both technologies and how to combine them into one part that functions as required. This can add to the design and manufacturing time and cost of the product.

An Overview of the Overmolding Process?

Переформовка is a subcategory of insert molding, which is the process of molding one plastic material directly onto a formed part. In this process, the first part is molded by injection molding, and then it is placed in the second mold for the overmolded material. This technique enables the use of two or more plastics in the production of a single product, giving the product both utility and beauty.

For example, overmolding allows for the combination of different Shore hardnesses, providing a soft touch layer on top of a rigid base for better grip and feel. Also, the use of multiple colors in an overmolded part can give it a competitive edge since it is not easily seen in other products. This technique is widely applied to the grips of tools like screwdrivers, power drills, and toothbrushes since both the comfort of the grip and the product’s appearance are essential factors.

Why choose the overmolding process?

Overmolding offers a range of benefits that make it a versatile and advantageous process.

Increased Material Flexibility: Overmolding enables the use of different materials in a single part, and this makes it possible to have different properties in the same part. This process improves the product’s looks, feel, and usability, which is advantageous to both the product and the consumer.

Elimination of Adhesives: Overmolding is a process where two or more different materials are joined together through an injection mold, thus replacing the need for adhesives or other joining techniques. This not only strengthens the final part but also cuts the assembly costs.

Integrated Seals: Overmolding makes it possible to bond soft seals directly onto molded parts. For instance, in electronics enclosures with IP ratings, an overmolded seal is cheaper and more efficient than fitting an o-ring groove. This integration enhances the performance of the part and the structural stability of the whole system.

Limitations of overmolding

Overmolding, despite its numerous benefits, comes with certain drawbacks:

Complex Process: Overmolding is a two-shot process, which means that the part cycle time and the cost are higher than in single-part molding. Also, it calls for the application of two tools or a two-shot mold that is quite expensive to produce. However, these are some of the challenges that one can face when using overmolding, but it can be cheaper than manufacturing two different injection-molded parts and then joining them.

Debonding Risk: The problem of delamination or distortion may occur when two different materials are bonded in an injection mold because the temperatures may not be ideal for the given material combination. This may require the use of mechanical interlocks in order to achieve a secure connection where heat alone is not enough.

If you want to know more about overmolding, please go to the overmolding page to check this out.

Industrial Uses of Overmolding vs Insert Molding

Both overmolding and insert molding are widely used for applications requiring high-quality and stringent products. Nevertheless, all these techniques have similar uses, and they are employed to manufacture numerous parts and products.

Автомобильная промышленность

Both insert molding and overmolding play a vital role in manufacturing numerous automotive parts that contain metal, rubber, or plastic, such as batteries, knobs, dash panels, motors, and handles.

Cosmetic Industry

These techniques are indispensable in the cosmetics industry for producing custom-made items and their containers with the use of various colors and surface treatments of cosmetic items such as perfume flacons, cosmetic brushes, and compacts.

Потребительские товары

In the case of household products, insert mold and overmold play a central role in manufacturing items such as toothbrush holders, containers, and cell phone cases. They also reinforce items such as patio chairs and step stools, which are usually found in multiple colors or materials.

Electrical Appliances:

The use of insert molding cannot be overemphasized, particularly in the electrical industry, where wires are coated with rubber insulation. This process helps to stop electrical conduction and increase safety levels. Insert molding also makes electrical appliances safer to handle by providing a proper place for insulators to be installed.

Искренняя техника is one of the top 10 Компании по литью пластмасс под давлением в Китае that specializes in creating unique products for different sector., With the help of the technical knowledge and skills that the company has gained over the years, the company offers its services at affordable prices. Whether for consumer products, home appliances, or car accessories, you can rely on these processes for quality production.

многослойное формование против вставного формования

Conclusion: Selecting Between Overmolding, Insert Molding, and Injection Molding

Overmolding and insert molding are the different techniques that fall under the injection molding process, which is a popular and efficient method of manufacturing consumer goods. As for the cost, injection molding is generally considered to be the most cost-effective method compared to other methods such as CNC machining and 3D printing per part.

Overmolding could be an optimal choice if:

  • Your part’s surface has different electrical or thermal properties.
  • It is essential to increase the level of shock absorption or decrease the level of vibrations.
  • It is necessary to produce a part from multi-colored plastic.
  • Your part must offer a comfortable, non-stick surface that the other part can easily grip.

Opt for insert molding when:

  • The substrate can be in the form of wires, electronic components, or circuit boards.
  • It is preferred not to have to spend the money on a two-shot mold or a 2K, which is more complicated.
  • You have to tap this part and install threaded inserts.

When the decision has been made to use injection molding for a certain application, the next choice is between insert molding, overmolding, or conventional injection molding. It is important to provide a clear definition of the product application to be able to make a proper choice. All these processes have their own special benefits suitable for various products. Deciding which method is right for your particular product is not always easy; therefore, it is advisable to consult a professional.

Speaking to a SincereTech representative can be helpful due to over a decade of the company’s experience in manufacturing. We can assist you in the decision-making process of your project and determine which process—insert molding, overmolding, or standard injection molding—will be most beneficial for your project.

Часто задаваемые вопросы

Q1. What is the process of TPE overmolding?

TPE overmolding is a process where TPE is injected into an existing substrate or a plastic part to form a chemical bond with the material in order to increase its durability and usefulness.

Q2. Is 2K injection molding the same as insert molding?

No, Insert molding involves placing an additional part on the substrate, while 2K injection molding involves injecting multiple materials into multiple-cavity molds for the production of intricate parts for vehicles.

Q3. What plastic types are suitable for overmolded?

The most commonly engineered plastics suitable for overmolding processes include high-density polyethylene (HDPE), PEEK resin, Delrin or acetal, polymethyl methacrylate acrylic, commonly known as PMMA, ABS, nylon, and PBTR. These plastics have different characteristics that make them suitable for different overmolding processes across industries like automotive and consumer products.

Q4. Overmolding vs. Insert Molding:  Which One Costs More?

Overmolding, however, provides economical scalability at higher production rates for companies, which in turn increases the overall profitability of a company through decreased tooling and assembly costs. Further, it helps with faster production of parts in large-volume runs. If you are going to produce intricate prototypes or low-volume parts, this cost differential becomes apparent due to the requirements of two parts.

двухэтапное формование

 Mastering Two Shot Molding: A Revolution in Plastic Injection

Two Shot Molding or two shot injection molding has revolutionized the world of plastic injection molding. This advanced manufacturing process offers a level of precision and versatility that is unmatched by traditional injection molding methods. In this comprehensive guide, we’ll delve into the intricacies of Two Shot Molding, exploring its processes, applications, benefits, and challenges. Whether you’re a seasoned industry expert or a curious novice, this article will provide valuable insights into the world of Two Shot Molding.

Two-Shot Molding: Colorful Solutions for Plastic Molding Parts

Двухэтапное формование (also called 2k mold, double injection molding) are a cost-effective method to produce plastic parts with two or more colors moulded at the same time, such as radio control buttons or dashboard faceplates.

Двухкомпонентное формование is a relatively new, rapidly growing technology. It is replacing older, two-step systems, eliminating a secondary process to add logos, graphics or text. New computer technology and advanced materials have promoted the growth of the two-shot process.

The two-shot process first injects one color material into the mold, then injects the second color around or over the first color. There are also multi-shot processes for parts with more than two colours.

двухступенчатое литье под давлением

двухступенчатое литье под давлением

The Two Shot Molding Process

Two Shot Molding is a multi-step process that involves injecting two different materials into a single mold to create a finished part with multiple colors or properties. Let’s break down the process into its key components:

  1. First Shot: The “First Shot” in Two Shot Injection Molding is a crucial step in the two-step injection molding process. This initial injection is where the primary material, typically a rigid thermoplastic, is injected into the mold cavity to create the foundational structure of the part.

    Here’s a more detailed look at the “First Shot” stage:

    1. Выбор материала: The selection of the primary material is vital. It should possess the desired mechanical and structural properties required for the finished part. This material serves as the core or substrate upon which the second material will be added.

    2. Mold Preparation: The mold used in Two Shot Molding is designed to accommodate both the “First Shot” and the “Second Shot.” It is crucial to ensure that the mold is appropriately prepared for the first injection. This includes proper alignment and clamping to prevent any material leakage.

    3. Injection: The chosen primary material is heated to its melting point and then injected into the mold cavity. This injection is carried out with precision, ensuring that the material fills the mold cavity uniformly to create the primary structure of the part.

    4. Cooling and Solidification: After the injection, the mold cools and solidifies the primary material. The cooling time and temperature are critical factors in achieving the desired material properties and dimensional accuracy.

    5. Mold open with no ejection: Once the first shot material has sufficiently cooled and solidified, the mold opens, and the core side (moving half) turn over 180 degree to prepare the second shot. This part is known as the “preform” or the “substrate.”

    The “First Shot” sets the stage for the second injection. It determines the part’s core structure, mechanical properties, and the areas where the second material will be added. The precision and accuracy in this step are essential to ensure a successful Two Shot Injection Molding process.

  2. Second Shot: The “Second Shot” is the second and final step in the Two Shot Molding process. In this stage, a different material or same material but different color is injected into the mold to complement or enhance the part created in the “First Shot.” The “Second Shot” provides additional colors, textures, properties, or features to the final product, creating a part with multiple materials or properties in a single mold.

    Here’s a closer look at the “Second Shot” phase:

    1. Выбор материала: For the “Second Shot,” a different material is selected, which complements or contrasts with the material used in the “First Shot.” The choice of material depends on the desired characteristics of the final part, such as color, texture, or additional functional properties.

    2. Mold Preparation: The same mold used for the “First Shot” is used for the “Second Shot.”  two shot injection molding including two molds together to be two shot mold. Proper alignment and clamping of the mold are crucial to ensure that the second material is injected accurately and bonds effectively with the first material.

    3. Injection: The second material is heated to its melting point and injected into the mold cavity. This injection must be precise to ensure that the material fills the designated areas of the mold, forming the desired features or properties. The coordination between the “First Shot” and the “Second Shot” is critical to achieve accurate material distribution and bonding.

    4. Cooling and Solidification: After the “Second Shot” is injected, the mold cools and solidifies the second material. The cooling time and temperature are carefully controlled to achieve the desired material properties and ensure a strong bond between the first and second materials.

    5. Ejection: Once the “Second Shot” material has cooled and solidified, the mold opens, and the finished part is ejected from the machine. The final product now features the combination of the “First Shot” material and the “Second Shot” material, creating a multi-material, multi-property part.

    The “Second Shot” injection adds complexity and versatility to the manufacturing process, allowing for the creation of parts with diverse colors, textures, functional properties, and more. It is essential to ensure that the materials used in the “First Shot” and “Second Shot” are compatible and that the injection process is well-controlled to achieve the desired aesthetics and performance in the final product. The result is a finished part that can meet the requirements of a wide range of industries, from automotive and consumer electronics to medical devices and beyond.

Injection Molding Machines for Two Shot Molding

To execute Two Shot Molding effectively, specialized injection molding machines are used. These machines have two injection units, allowing for the sequential injection of different materials. The coordination between the two injection units is crucial to achieve accurate and consistent results. Modern machinery offers sophisticated control systems, ensuring precise material distribution and minimizing waste.

Materials Used in Two Shot Molding

Selecting the right materials is a critical aspect of Two Shot Molding. The choice of materials depends on the desired characteristics of the final part. Common material combinations include:

  • Thermoplastic and TPE: Combining a rigid thermoplastic with a soft thermoplastic elastomer (TPE) can create parts with both structural strength and flexibility.

  • Two Thermoplastics: Using two different thermoplastics can yield parts with varying colors, textures, or properties.

  • Thermoplastic and Overmold: Переформовка a thermoplastic with a second material can enhance grip, aesthetics, or functionality.

  • Multi-Color Combinations: For parts requiring intricate designs or color variations, using different colored thermoplastics is a common choice.

Advantages and Benefits of Two Shot Molding

The Two Shot Molding process offers several advantages and benefits, making it a preferred choice for manufacturers:

двухступенчатое формование

2k формовка

Improved Product Design and Aesthetics

Two Shot Molding allows for the integration of multiple materials, colors, and textures within a single part. This versatility enhances product aesthetics and design options, making it ideal for consumer products and complex components.

Экономия средств

While the initial investment in Two Shot Molding equipment may be higher, the process can lead to substantial cost savings in the long run. It reduces the need for secondary processes such as assembly and bonding, minimizing labor and material costs.

Reduced Assembly Steps

As mentioned, Two Shot Molding eliminates the need for secondary assembly steps, simplifying production and reducing the risk of errors. This streamlines the manufacturing process and accelerates time-to-market.

Enhanced Material Compatibility

By combining materials with complementary properties, Two Shot Molding offers the advantage of improved material compatibility. This is especially beneficial in applications where different materials need to work together seamlessly.

Environmental Considerations

Reducing waste is a significant environmental benefit of Two Shot Molding. It minimizes material scrap and excess packaging associated with traditional manufacturing processes, contributing to sustainability efforts.

Applications of Two Shot Molding

The versatility of Two Shot Molding extends to various industries:

Автомобильная промышленность

In the automotive sector, Two Shot Molding is used to create components with both functional and aesthetic requirements. It’s commonly employed for creating grip-enhancing surfaces on steering wheels, gearshift knobs, and interior trim pieces.

Бытовая электроника

Consumer electronics benefit from the aesthetic advantages of Two Shot Molding. It’s used to produce products with visually appealing designs and tactile comfort, such as smartphone cases and remote control buttons.

Медицинские приборы

Two Shot Molding ensures the precision and functionality required for medical devices. It’s employed in creating components like ergonomic surgical tools and drug delivery devices.

Packaging

In the packaging industry, Two Shot Molding is used for designing containers with built-in seals, grips, or color variations. This simplifies the packaging process and enhances the user experience.

Other Industries

Two Shot Molding is not limited to the above-mentioned industries. It finds applications in countless other sectors, wherever the combination of materials and intricate designs is required.

Challenges and Considerations

While Two Shot Injection Molding offers numerous benefits, it also presents some challenges:

Part design and mold design for Two-shot mold 

Part design & mold design for 2К литье под давлением is totally different, because the molding machine is different to single colour molding machines, there are two shot molding machine has two nozzles in one machine, but there are three types of different Multi-Component Injection Molding machines (vertical nozzle, parallel nozzle, 45 degree nozzle), each type of machine needs different mold design, before design the 2K mold you must know the data of 2K molding machine in advance, to know how to design the two color mold you can download the Multi-Component Injection Mold Design Guild document below,

Two color molding

Two color molding

Выбор материала

Choosing the right materials is critical. Compatibility and adhesion between materials are paramount to avoid defects or part failure, wrong material will make thing west.

Quality Control and Inspection

Quality control becomes more critical in Two Shot Molding. Ensuring that each part meets the required specifications demands rigorous testing and inspection processes.

Cost Factors

The initial investment in Two Shot Molding equipment can be higher than traditional molding machines. However, the long-term cost savings often outweigh the initial capital expenditure.

Case Studies and Examples

Let’s explore some real-world examples of case studies and examples that highlight the versatility and effectiveness of Two Shot Molding in various industries:

1. Automotive Shift Knobs:

  • Отрасль: Автомобильный
  • Приложение: Two Shot Molding is commonly used to manufacture shift knobs for automobiles. The process involves using a rigid thermoplastic for the core of the knob, providing structural integrity, and a soft thermoplastic elastomer (TPE) for the outer layer, ensuring a comfortable and non-slip grip.
  • Benefits: This approach combines durability with ergonomic design, creating shift knobs that are not only visually appealing but also comfortable and functional.

2. Medical Device Handles:

  • Отрасль: Медицинский
  • Приложение: Two Shot Molding is utilized for manufacturing handles for various medical instruments, such as surgical tools. The first shot involves a rigid material for the core structure, and the second shot consists of a different material to enhance the grip and ergonomics.
  • Benefits: The process results in handles that provide surgeons with a secure grip during delicate procedures while maintaining the necessary structural integrity.

3. Consumer Electronics Casings:

  • Отрасль: Бытовая электроника
  • Приложение: In the consumer electronics sector, Two Shot Molding is employed for creating smartphone and tablet casings. The first shot forms the core structure, while the second shot allows for the integration of different colors and textures, giving electronic devices a premium and customized appearance.
  • Benefits: Two Shot Molding enhances the visual appeal of electronic devices, making them stand out in a competitive market.

4. Multi-Color Packaging Seals:

  • Отрасль: Packaging
  • Приложение: Two Shot Molding is used to create packaging components with built-in seals, grips, or color variations. For example, closures for food containers that require both a sealing function and a different color for branding.
  • Benefits: This application streamlines the packaging process, reduces assembly steps, and enhances the user experience by providing secure seals and branding opportunities in a single manufacturing step.

5. Automotive Interior Trim:

  • Отрасль: Автомобильный
  • Приложение: Two Shot Molding is instrumental in producing automotive interior trim components, such as door handles and dashboard accents. The process allows for a combination of materials to achieve desired aesthetics and functionality.
  • Benefits: Interior trim pieces created through Two Shot Molding are not only visually appealing but also durable and functional, enhancing the overall quality of the vehicle interior.

These case studies demonstrate the adaptability of Two Shot Molding across diverse industries. By combining different materials in a single manufacturing process, it enables the creation of parts with enhanced aesthetics, improved functionality, and cost-efficient production. Whether it’s for automotive components, medical devices, consumer electronics, or packaging solutions, Two Shot Molding continues to play a pivotal role in modern manufacturing by offering design flexibility and process efficiency.

Future Trends and Developments in Two Shot Molding

Two Shot Molding is constantly evolving with emerging technologies and industry trends. Some key developments to watch for include:

Emerging Technologies

Advancements in injection molding machinery and materials are driving innovation in Two Shot Molding. New technologies offer even more precise control and efficiency.

Sustainability Initiatives

As the world places greater emphasis on sustainability, Two Shot Molding’s reduced waste and material efficiency make it an environmentally friendly choice.

Market Growth and Opportunities

The growth of Two Shot Molding is expected to continue, opening up new opportunities in various industries. Being prepared to harness these opportunities is essential for manufacturers.

Заключение

Two Shot injection Molding has cemented its place as a game-changer in the world of plastic литьё под давлением. Its ability to create intricate, multi-material parts with precision and cost-efficiency makes it a valuable technique for manufacturers across industries. As technology advances and environmental concerns grow, Two Shot Molding is poised to play an even more significant role in shaping the future of manufacturing. Whether it’s for enhancing product aesthetics or streamlining production processes, Two Shot Molding is a technique worth exploring and mastering in the world of modern manufacturing.

SINCERE TECH provides two-shot molding, and custom Plastic injection Molds & plastic injection molding service to all of the industries. Our state-of-the-art mold facilities and molding machines include a variety of processing and finishing equipment to manufacture plastic molds and parts from many types of industries, including complex specialty injection molds, such as:

2-K Mold, Multi-Component Injection Mold Design Guild Line

If you have a new project that wants to know the best manufacturing process and solutions? Send us an email to info@plasticmold.net. if you want to know more detail about our advantages, please go to our home page by https://www.plasticmold.net/.

вставное молдинг

What is inert molding

Вставной молдинг is an overmolding manufacturing technology to produce pre-formed plastic parts; sometimes we call it metal insert molding or overmolding, which means insert molding is a type of overmolding (the substrate for overmolding is inserts instead of plastic parts). Putting the insert into an injection overmold before molding to produce a single final product (a combined single molding part with inserts). The insert, which can be made of metals, ceramics, copper screws, or other plastic or metal materials, is inserted in a mold cavity before being injected with plastic resin.

If the inserts are constructed of plastic or molded plastic pieces, we call this over molding, whereas the first shot of the plastic insert part is referred to as substrate. If the inserts are composed of metal, we will call it metal insert molding.

Insert molding is widely used in many industries on the world market to save on assembly costs, such as electronics, automotive, furniture, and many more, where molding parts require extremely strong, durable, and precise parts. Insert molding can produce complex plastic products with different insert materials or components in a single molding process, eliminating the need for separate assembly steps and lowering production costs. In addition, insert molding can increase part quality and reliability by forming a strong link between the insert and the plastic resin. When metal screws and plastics are inserted together in a molded part, or when different brass screws or materials are molded together into a single molding part, we call this metal screw/brass insert molding.

Custom nsert molding not only reduces assembly and labor costs but is also better than assembly parts as it reduces the size and weight of the part, improves component reliability, and delivers improved part strength and structure with enhanced design flexibility.

Today, over 90% of insert molding parts come from Chinese mold manufacturing companies, where low labor costs and high-quality control are significant factors. China can also do assembly for all of your ending parts together and ship them to you.

We have been professionals in plastic mold making and plastic molding manufacturing for over 18 years, with a strong engineering team, mold maker team, and quality control production.

We can make your project from start to finish, no matter if it is normal molding, 2K injection molding, custom insert molding, medical plastic molding, metal insert molding, automobile industrial, cosmetic injection molding parts, home appliances injection molding, and many more.

The Process of insert injection molding

The insert molding process starts off by either inserting the metal inserts before the injection molding process (normally used technology) or they can be inserted after the injection molding process (Pressed in). If the inserts are chosen to be inserted before the plastic injection molding process, an вставное молдинг process operator or a robotic arm will load them into the mold.

If it is chosen to insert the metal inserts after the plastic injection molding process, some pressing tools may needed, after plastic injection molding process is complete and the part is cooled. and then press the thread inserts into the hole or hollow boss, there are two types of pressed in insert molding, cold pressed in and hot pressed in.

Simplely expalin for both press insert molding: Cold pressed in insert molding will press the cold metal screw or other insert into the hole pasition, hot pressed in insert moldign will put the hot metal inserts into the hole position and cool the metal part, both insert moldings are requires the interference fitting between the hole and the our diameter of metal insert.

Pressed in Insert molding

Usually, insert molding insert the insert into the mold before the injection molding process, and that is the key advantage of insert molding, and all below we are talk about is related to this process, we can call it as insert injection molding or overmolding.

This procedure ideally reduces insertion costs, which can save our customers substantial costs on insert molding projects. If you want to know more about insert injection molding, you can go to the вставка литья под давлением page for more information.

Regarding the insert molding process, there can be some very nice advantages when a robotic arm is handling parts. When it comes to removing the molded parts and getting them ready for more processes, a multiple-axis robot can do that faster and more accurately than a human. After the molded part is created and removed from the mold, the robot grips the part and moves it to either a location to be held or onto a system to be inspected. The manufacturing equipment’s general layout and the kind of product being created are the determining factors in making this choice.

In order to assure a high level of quality for many parts that go through insert molding, robots can have vision systems mounted on them. These vision systems inspect parts faster than a human, as well as know exactly what the metal component’s placement accuracy is.

Several industries thrive on the products created through the insert molding process. Actually, there are so many products created through this type of custom injection molding process that buying inset molding from a Chinese литьевая форма компания will save a lot of money since the labor costs are low in China. Here is a list of the industries these products belong to, and there is a list of the products that are created through this type of custom injection molding:

Вставной молдинг

Insert injection molding cost

There are some factors that affect insert injection molding costs.

The price of the insert itself makes up the first element. Molding materials, including plastics like ABS, PC, or PA and metal inserts like steel or aluminum, can be used to create inserts. The material utilized, the size and intricacy of the insert, and the quantity needed will all affect the cost of the inserts. When making 100 pieces of inserts compared to making 1000 metal inserts, the unit price will be total different.

The cost of the insert mold is an additional factor in вставка литья под давлением costs. The mold plays a crucial role in the injection molding process since it defines the finished part’s shape and characteristics. This initial cost will be more than the unit cost; if you plan to make thousands of parts, then making insert molds will be beneficial. If the insert part is made of plastic, then we may call it overmolding. This will require two molds, one for the first plastic parts and one for overmolding, which will increase the initial mold cost.

Another significant factor in insert injection molding costs is labor costs. Compared to standard injection molding, insert injection molding involves more labor since operators need to manually place the inserts into the mold before each shot. This will increase the cycling time and the manual cost.

To get an accurate estimate of the cost of insert injection molding, consulting with a professional injection molding manufacturer will be a better option. They can evaluate your specific project requirements and provide a detailed cost analysis based on 3D data and specifications, waste rate, and production volume. This will help you make an informed decision and determine if insert injection molding is the right choice for your project. You are welcome to send us your insert injection molding project, and we will quote you a price in 24 hours.

Ниже приведены некоторые из custom insert injection molding parts we made before. If you have any project that needs brass insert molding, над формовкой, or any metal insert molding, send us your requirements for a quotation.

переформовка

Advantages of Insert Molding

An extremely effective substitute for conventional techniques of assembling insert pieces with adhesives, connections, welding, soldering, or fasteners is insert injection molding. There are numerous advantages to this cutting-edge method that can greatly improve the effectiveness and caliber of your molded components. Some advantages of insert molding over traditional injection molding are listed below.

Reducing Final Molding Parts

The smaller molding pieces produced by insert molding are among its main benefits. Compared to conventional assembly techniques, insert molding creates smaller pieces by molding metal inserts with plastic during the molding process. This shrinkage enhances the overall performance of the molding process in addition to saving material costs. Additionally, the parts’ weight is greatly decreased, which improves both performance and cost-effectiveness.

Decreased Labor and Assembly Expenses

Insert molding not only reduces size but also significantly lowers labor and assembly costs. In contrast to labor-intensive, multi-step traditional assembly methods, insert injection molding integrates two or more elements into a single molding part in a single shot. The labor and assembly costs are significantly decreased by this efficient method. Complex assembly procedures are not necessary because all that is required of a worker during the molding production process is to simply place the metal item into the mold. Moreover, a single shot is perfect for intricate insert molding parts since it may shape one insert or several inserts.

Enhanced Trustworthiness

The enhanced dependability that insert molding provides is yet another noteworthy benefit. Every component is tightly molded in thermoplastic during the insert molding process, guaranteeing a strong and long-lasting bond. By doing this, normal assembly process difficulties such as part loosening, mismatch, misalignment, and others are avoided. The parts’ resistance to stress and vibration is further increased by the molding process’s use of plastic resin, adding to their dependability and durability.

Enhanced Flexibility in Design

Insert molding makes it easy for designers to think about how those parts should be assembled together. Designers can save time and concentrate on other areas of the design by removing the need to think about how pieces will be assembled or how metal and plastic components will be attached together. With this insert molding process, there are lots of design problems that can be solved very easily.

Lower injection molding expenses and enhanced productivity

Insert molding helps to improve efficiency and lower overall injection molding costs. Operators may find it difficult to set inserts during the molding step, particularly if they are working with small or many metal pieces that are prone to falling. On the other hand, using vertical injection machines greatly increases productivity, saves time, and lowers the possibility of dropped or misplaced inserts. This helps to reduce the cost of injection molding while also improving the molding process’s overall efficiency.

insert molding vs overmolding

Reduced assembly and labor costs

Insert molding also offers substantial cost savings in terms of assembly and labor. Unlike traditional assembly methods that require multiple steps and labor-intensive processes, insert injection molding involves a single shot that combines two or more parts into an end molding part. This streamlined approach drastically reduces assembly and labor costs. During the molding process, a worker simply needs to insert the metal part into the mold, eliminating the need for complex assembly processes. Furthermore, a single shot can mold a single insert or multiple inserts, making it ideal for more complex insert molding parts. such as insert molding with 4–10 pieces of metal screws, which we call screw insert molding.

Increased Reliability

Another significant advantage of insert molding is the increased reliability it offers. The plastic molding process tightly molds every part in thermoplastic, ensuring a secure and durable bond. This prevents issues such as part loosening, mismatch, misalignment, and other common problems associated with traditional assembly methods. The use of plastic resin in the molding process also enhances the parts’ resistance against shock and vibration, further improving their reliability and longevity.

Increased Design Flexibility

Insert molding also gives more flexibility for the part designers in their design process. Who can save time and focus on other factors in their designs? There is no need to consider how pieces will be assembled or how metal and plastic components will be connected together. This will save part designers time and result in better end products.

Reducing injection molding costs

Furthermore, insert molding can reduce injection molding costs and improve efficiency compared to assembly. The placement of inserts during the molding stage will be a little challenging for molding operators, especially when there are small or multiple metal parts in the insert molding. It will be a little hard to put the insert into the mold cavity correctly. However, the use of vertical injection machines significantly improves efficiency, saving time and reducing the risk of misplaced or dropped inserts. This not only enhances the overall efficiency of the molding process but also helps to lower injection molding costs.

If you have an insert molding project in hand, contact us to get a price. We have been in this field for over 18 years, making custom insert molding. We are experts at providing insert molding services that are tailored to each individual client’s needs.

Since every project is different, Sincere Tech is one of the top 10 производители пресс-форм в Китае and provides a variety of custom insert molding options to meet the specific requirements of each of our clients. To guarantee that we offer the highest quality insert mold and any other custom injection mold, we have skilled mold makers that operate with cutting-edge machinery.

Our insert molding services are excellent and reasonably priced. In order to maintain cheap prices while producing high-quality insert molding goods, we employ cutting-edge technology. This enables us to offer low pricing to our clients without sacrificing quality.

прецизионное литье пластмасс под давлением

Что такое точное литье пластмасс под давлением?

Точное литье пластмасс под давлением это жесткие требования к допускам для литьевых деталей из пластика. Обычно допуск для литьевой детали из пластика составляет около 0,05-0,1 мм, если требование к допускам для детали составляет около 0,01-0,03 мм, это означает, что это прецизионное литье пластмасс под давлениемДля изготовления высокоточных деталей из пластика методом литья под давлением первым делом необходимо изготовить прецизионная литьевая формавсе компоненты формы должны иметь допуск в пределах 0,005–0,01 мм.

Это минимальное требование для высокоточная литьевая форма для пластика После завершения изготовления формы необходимо провести ее испытание, чтобы проверить соответствие размеров требованиям двухмерного чертежа, а также испытать форму и обеспечить стабильные допуски.

Высокоточная литьевая форма для пластика является ключевым моментом в производстве высокоточные детали для литья пластмасс под давлением, но не ограничиваясь этим, вам все еще необходимо использовать высокоточную литьевую машину для производства детали, с помощью этого двухминутного требования мы можем быть уверены, что мы можем сделать прецизионные литьевые пластмассы Тем не менее, есть несколько вопросов, которые нам все еще необходимо знать для высокоточного литья пластмасс под давлением.

Точное литье пластмасс под давлением

Пластиковый прецизионный соединитель-литье под давлением

Вопрос 1:

Определение структуры прецизионная пластиковая форма является ключевым моментом, а общая структура является воплощением конечного эффекта продукта: определение общей структуры формы, определение литниковой системы, определение системы выталкивания и определение системы транспортировки воды, а также другие должны способствовать ориентации продукта после обработки.

Вопрос 2:

А как насчет проблемы подачи? Прежде всего, мы выберем разумную схему впрыска в соответствии со структурой, весом, объемом и стоимостью продукта, которая сможет удовлетворить как требования клиентов, так и требования к качеству.

Во-вторых, мы будем проектировать в строгом соответствии со стандартами проектирования литья под давлением: компоновка питателя должна быть единообразной, особенно размер поперечной нагрузочной поверхности основного и вспомогательного питателя, форма и размер литника.

Вопрос 3:

Что насчет проблемы выброса? Во-первых, мы определим режим выброса в соответствии с ориентацией и структурой продукта. Во-вторых, мы оценим баланс выброса и сосуществование с другими системами, такими как помехи для транспортировки воды и знаки рециркуляции, дата-часы и т. д.

Вопрос IV:

Проектирование системы водоканалов основано на четырех требованиях (линия охлаждения должна быть максимально сбалансированной. Линия водоохлаждения не должна мешать работе других механизмов. Оборудование водоканала должно соответствовать стандартам заказчика и быть простым в установке. Каждая линия водоканала должна иметь идентификационные номера или маркировку (вход и выход).

 Вопрос V:

Как обеспечить точность изготовления формы и точность формованных изделий для получения точного литья под давлением, это в основном зависит от точности изготовления полости формы, вставки и размера сердечника формы. Точность номера полости формы или точность линии разъема напрямую повлияют на размер изделия. Во-первых, нам нужно составить план производственного процесса и технологическую схему.

Каждый завершенный производственный процесс должен быть полностью проверен, а список проверки данных должен быть записан в паспорте. После завершения производства заготовка должна быть обработана и сохранена.

Конструкция линии разъема пластиковой формы также является важной частью. Если конструкция не является разумной, деталь будет нелегко извлечь из формы или даже повредить форму. Вот принципы конструкции линии разъема формы

Удобно вынимать пластиковую деталь и упрощать структуру пластиковой формы. После выбора направления выемки положение линии разъема должно обеспечивать падение пластиковой детали без каких-либо помех, таких как слайдеры и т. д.

Для пластиковой детали с высокой точностью соосности линию разъема следует выбирать в таком положении, чтобы на нижнюю или верхнюю форму можно было одновременно поместить два диаметра.

Когда требуется, чтобы точность литья пластмасс под давлением вдоль направления высоты была высокой, следует использовать полость с половинным переливом. Если поперечный облой образован на линии разъема, то легко обеспечить точность высоты, в то время как полость без перелива обеспечить нелегко.

При высокой точности радиальных размеров следует учитывать влияние толщины облоя на точность пластиковой детали, как показано на рисунке. Если вертикальное разделение пластиковых деталей легко обеспечить, то горизонтальный профиль трудно контролировать из-за толщины облоя, что влияет на точность пластиковых деталей.

Убедитесь, что внешний вид пластиковой детали, облой должен легко очищаться и не должен легко повреждать внешний вид. Облой, образующийся на поверхности разъема, как показано на рисунке, должен легко очищаться и не должен легко повреждать внешний вид пластиковой детали.

Удобен для изготовления пластиковых форм и обработки формовочных деталей. Улучшенная поверхность разъема делает концентричность обработки пластиковых форм низкой, легкой в изготовлении, а облой не портит внешний вид пластиковых деталей.

Обеспечьте прочность формованных деталей, например, при определении поверхности разъема избегайте тонких стенок и острых углов формованных деталей.

Помимо элементов конструкции обычных пресс-форм, при проектировании прецизионных литьевых форм следует также учитывать следующие моменты:

  •  Примите соответствующие допуски размеров формы;
  •  Предотвращение ошибок формования при усадке;
  •  Предотвращать деформацию инжекционной части;
  •  Предотвращать деформацию при распалубке;
  •  Погрешность изготовления штампа/пресс-формы сведена к минимуму;
  •  Предотвращение ошибок точности пресс-формы;
  •  Поддерживайте точность форм.

Предотвращение ошибок точности пресс-формы; классификация обрабатывающих пресс-форм на заводе по производству пластиковых пресс-форм и требования к различным моментам, на которые следует обратить внимание

Существует множество видов литьевых форм для пластика, которые можно условно разделить на десять категорий. В зависимости от различных требований к материалу детали, физико-химическим свойствам, механической прочности, точности размеров, отделке поверхности, сроку службы, экономичности и т. д. выбираются различные типы литьевых форм.

Пластиковая форма с высокой точностью должна обрабатываться высокоточным станком с ЧПУ, а материал и процесс формования формы имеют строгие требования. Технология форм также необходима для проектирования и анализа.

К некоторым деталям предъявляются особые требования при формовании, поэтому применяются передовые технологии, такие как горячеканальная система, литье под давлением с использованием газа, баллон с азотом и т. д. необходимы для литья пластмасс.

Производители пластиковых форм должны иметь станки с ЧПУ, электроэрозионные станки, проволочно-вырезные станки, профилировочно-фрезерное оборудование с ЧПУ, высокоточные шлифовальные станки, высокоточные трехкоординатные измерительные приборы, компьютерное проектирование и соответствующее программное обеспечение и т. д.

В целом, при выборе крупных штамповочных штампов для металла (например, штампов для деталей автомобильных крышек) следует учитывать, имеет ли станок механизм держателя заготовки, равномерную смазку кромок, многопозиционный прогрессивный механизм и т. д. Помимо усилия пробивки, следует учитывать время пробивки, подающее устройство, станок и устройство защиты штампа.

Производственные мощности и процессы изготовления пластиковых форм, указанные выше, не имеются и не освоены каждым предприятием. При выборе кооператива производитель пластиковых форм, мы должны знать его возможности обработки, не только смотреть на аппаратное обеспечение, но и объединять уровень управления, производственный опыт и техническую силу.

Для одного и того же набора форм иногда существует большой разрыв в расценках разных производителей форм. Вы не должны платить больше, чем стоимость формы, но и не должны быть меньше, чем стоимость формы. Производители пластиковых форм, как и вы, хотите получить разумную прибыль в бизнесе, заказ набора форм по гораздо более низкой цене станет началом проблем. Вы должны начать с собственных требований и всесторонне их измерить.

Если у вас есть пластиковые детали, которые нужно прецизионное литье под давлением производственные услуги, вы можете связаться с нами, Sincere Tech компания по изготовлению индивидуальных изделий из пластика методом литья под давлением в Китае. Мы предлагаем точные литьевые формы и услуги литья для клиентов по всему миру.