Литье под давлением ацеталя

Литье под давлением ацеталя или литье под давлением ПОМ детали, изготовленные из полиоксиметилена (ПОМ), высокообработанного термопластичного материала. ПОМ может принимать форму гомополимера или сополимера ацеталя. Гомополимер ацеталя демонстрирует высокую прочность из-за своей кристаллической структуры. Однако это может быть проблематично из-за высокоспецифичной температуры плавления. Сополимер ацеталя легче формовать из-за большего окна обработки. Он менее механически прочен, чем предыдущий материал, поскольку его кристаллическая структура менее упорядочена.

Некоторые известные поставщики предлагают сополимерные ацетали. В то время как DuPont, известный поставщик материалов, предлагает только Delrin®, гомополимер с улучшенными свойствами. Марки Delrin® классифицируются в соответствии с их прочностью, жесткостью, вязкостью и устойчивостью. Он совместим как с литьем под давлением, так и с обработкой на станках с ЧПУ. Изделия/детали из ацеталя жизненно необходимы в автомобильной, медицинской, а также в секторах обработки жидкостей.

В этой статье основное внимание уделяется литью под давлением ацеталя, свойствам POM, преимуществам и рекомендациям по проектированию для изготовления деталей из POM. Кроме того, мы предоставим Руководство по проектированию литья под давлением, некоторые предложения и рекомендации для оптимальных результатов для вашего проекта литья под давлением ацеталя.

Литье под давлением ацеталя

Что такое ацеталь?

Ацеталь, также известный как полиоксиметилен (ПОМ), является прочным и высокопроизводительным термопластиком. Это полукристаллический материал, обычно используемый в инженерных приложениях. Ацетальные полимеры образуются путем связывания длинных цепей молекулярной формулы CH2O. Некоторые сополимерные мономеры также включены для обеспечения дополнительной функциональности. В зависимости от структуры ацеталь может быть гомополимером или сополимером по своей природе в зависимости от структуры.

Самый известный гомополимер ацеталя — это DuPont™ Delrin®. Ацеталь-пластики обладают высокой прочностью и жесткостью, что делает их идеальными для применений, требующих высокой прочности, но низкой гибкости. Эти пластики также обладают низким трением и высокой скоростью износа. Низкая водопоглощаемость делает ацеталь обладающим превосходной устойчивостью к изменениям размеров. По этим причинам ацеталь используется вместо металлов во многих областях.

Свойства материала ацеталь/ПОМ

Таблица: Свойства различных марок ацеталя

Свойство Делрин® 100 BK602 Дюракон® М90-44 Celcon® M90 Кепитал® F20-03 Хостаформ® C9021
Физический
Плотность (г/см³) 1.42 1.41 1.41 1.41 1.41
Скорость усадки (%) 1,9–2,2 2.1–2.3 1,9–2,2 2.0 1,8–2,0
Твердость по Роквеллу 120 Р 80 М NA NA NA
Механический
Прочность на растяжение (МПа) 72 62 66 65 64
Удлинение при пределе текучести (%) 23 35 10 10 9
Модуль упругости при изгибе (ГПа) 2.9 2.5 2.55 2.55 NA
Прочность на изгиб (МПа) NA 87 NA 87 NA
Литье под давлением
Температура сушки (°C) 80–100 NA 80–100 80–100 120–140
Время высыхания (ч) 2–4 NA 3 3–4 3–4
Температура плавления (°C) 215 200 205 180–210 190–210
Температура пресс-формы (°C) 80–100 80 90 60–80 85

В таблице выше представлены торговые наименования POM, упомянутые выше, вместе с их свойствами. Гомополимер Delrin® 100 имеет самую высокую прочность на растяжение из-за более высокой степени кристалличности полимера. POM характеризуется очень хорошей прочностью на растяжение и изгиб, но высокой скоростью усадки. В зависимости от требований к применению определенные марки POM могут содержать наполнители для повышения прочности, коррозионной стойкости или устойчивости к УФ-излучению.

Преимущества литья под давлением ПОМ

Ацеталь обладает высокими эксплуатационными характеристиками с желаемыми инженерными характеристиками. Материал обеспечивает высокую усталостную прочность и прочность на ползучесть при воздействии нагрузки. Высокая механическая прочность делает его оптимальным для различных секторов, требующих точности, таких как аэрокосмическая и автомобильная промышленность. Низкое трение позволяет POM иметь очень низкий уровень износа в течение длительного периода. Более того, ацеталь не ржавеет/корродирует и может работать при высоких температурах.

Сопротивление усталости

Детали из ацеталя, полученные литьем под давлением, обладают хорошими эксплуатационными характеристиками, когда подвергаются повторяющимся циклам напряжения. Он наиболее подходит в ситуациях, когда нагрузка постоянна, например, в зубчатых передачах. Таким образом, гомополимерный POM обеспечивает лучшую усталостную прочность, чем сополимеры. Эти особые свойства позволяют иметь долгосрочную надежность в условиях высокого напряжения. Усталостная прочность делает POM подходящим для использования в приложениях, где требуются механические детали.

Сопротивление ползучести

Формованная деталь из POM демонстрирует размерную стабильность при воздействии механических нагрузок в долгосрочной перспективе. Она имеет очень низкую тенденцию к постоянной деформации, даже когда она подвергается постоянному напряжению. Эта характеристика делает POM подходящим для использования в несущих нагрузках. Отсутствие ползучести материала также делает его идеальным для структурных применений. Это очень надежная область производительности POM под давлением.

Высокая прочность

Детали из POM, изготовленные методом литья под давлением, обеспечивают наилучшие характеристики растяжения и изгиба. Материал обеспечивает жесткость, необходимую для высокопроизводительных механических деталей. Гомополимерные версии POM демонстрируют даже большую прочность по сравнению с сополимерами. Некоторые распространенные области применения включают конвейеры и компоненты, связанные с безопасностью. Механические характеристики POM достаточно универсальны, что позволяет использовать их в различных областях.

Низкий коэффициент трения

Низкий коэффициент трения POM снижает износ скользящих элементов. Материал хорошо подходит для использования в областях, где есть небольшое изменение движения. Он требует минимального обслуживания из-за своей естественной тенденции к снижению трения: эта способность POM противостоять истиранию обеспечивает довольно долгий срок службы формованных деталей. Поэтому его часто применяют там, где необходим низкий коэффициент трения.

Безопасность пищевых продуктов

Передовой пищевой материал POM соответствует стандартам безопасности, применимым к продуктам, контактирующим с пищевыми продуктами. POM также может использоваться производителями машин и оборудования для пищевой промышленности. Он соответствует требованиям FDA, USDA и всем правовым и нормативным требованиям строгой безопасности. Благодаря своей нетоксичности POM хорошо подходит для использования в этих секторах. Деталь для литья под давлением из ацеталя широко используется в оборудовании для пищевой промышленности благодаря своей надежности и безотказности.

Стабильность размеров

Изделия из ацеталя, полученные литьем под давлением, имеют точные размеры после охлаждения в процессе формования. Во время формования их усадка относительно высока, но после этого они остаются практически однородными. Стабильность размеров важна в таких секторах, как автомобилестроение и электроника. Детали из ПОМ, полученные литьем под давлением, сохраняют стабильность размеров при механическом применении и давлении. Эта характеристика является предпосылкой для прецизионных компонентов.

Коррозионная стойкость

POM относительно устойчив к большинству химических веществ, таких как топливо и растворители. Лучше всего его использовать в местах, которые могут контактировать с химикатами. Например, цилиндрические резервуары для хранения. Однако материал подвержен воздействию сильных кислот и оснований. POM хорошо выдерживает химическое воздействие и, следовательно, является подходящим материалом для использования в управлении жидкостями. Он также имеет хорошую и стабильную химическую стойкость, а также длительный срок службы в суровых условиях.

Теплостойкость

POM способен выдерживать использование в областях с высокими температурами, до 105°C. Гомополимерные сорта выдерживают более высокие тепловые всплески, чем сополимеры. Предполагаемое свойство имеет решающее значение для тех компонентов, которые подвергаются воздействию переменных температурных условий. Эта характеристика делает POM пригодным для использования в промышленности из-за его устойчивости к высоким температурам. Правильный выбор используемых материалов означает способность выдерживать температурный климат. высокотемпературный пластик pgae, чтобы узнать больше о высокотемпературных материалах.

Услуги по формованию пластика POM

Ключевые соображения при проектировании литья под давлением ПОМ

Литье под давлением ацеталя предпочитает использовать формы из нержавеющей стали. Используемый материал обладает коррозионным эффектом. Поэтому используемые формы должны быть прочными и устойчивыми. Высокая усадка требует тщательной разработки формы для получения точных деталей. POM широко применяется в автомобильных, промышленных и медицинских деталях. Поэтому формование должно выполняться правильно, и в этом случае оно гарантирует, что степень точности и качество продукции будут высокими. Важно учитывать некоторые особенности при проектировании для литья под давлением POM.

Толщина стенки должна быть в диапазоне от 0,030 до 0,125 дюйма. Поддерживая минимальное отклонение толщины, можно добиться равномерной толщины детали. Управление допусками имеет решающее значение, поскольку скорость усадки компании высока, и это очевидно на примере POM. Радиусы должны быть минимизированы, особенно в областях, которые испытывают максимальное напряжение. Углы уклона от 0,5 до 1 градуса являются идеальными, поскольку их выталкивание происходит плавно.

Толщина стенки

Толщина стенки напрямую влияет на качество деталей из литьевого формования POM. Более толстые секции также могут привести к деформации или усадке детали тем или иным образом, и это может быть нежелательным. Таким образом улучшается общая структура и поддерживается постоянная толщина. Однако, даже очень тонкие стенки, хотя и трудно, должны соответствовать определенным ограничениям. Толщина стенки играет важную роль в структурных применениях и, если она хорошо сделана, помогает надежно выдерживать высокие давления.

Допуски

POM демонстрирует высокую усадку, что может стать проблемой при работе с формованными деталями из POM, которые должны находиться в пределах жестких допусков. В частности, обнаружено, что более толстые стенки увеличивают вероятность отклонения допусков. Проектирование для обеспечения одинаковых измерений — неплохая идея, поскольку это гарантирует, что размеры будут последовательными. Всегда есть способ правильного формования, и это гарантирует, что допуски будут в приемлемых пределах. Проблемы, связанные с изменениями размеров, хорошо решаются путем планирования и контроля.

Радиусы

Радиусы в конструкции деталей помогают минимизировать концентрацию напряжений при использовании детали. Острые углы всегда являются проблемой, поскольку они являются точками, которые могут сделать конструкцию менее прочной. Включение радиусов минимизирует эти области высокого напряжения, тем самым увеличивая срок службы детали. Радиусы должны быть равны или больше 0,25 номинальной толщины стенки трубы. Меньшие радиусы снижают напряжение; однако большие радиусы, вплоть до 75%, обеспечивают лучшее распределение напряжения.

Угол наклона

Можно достичь высокого выталкивания деталей из POM с минимальными углами наклона. POM имеет низкое трение, он также может иметь углы наклона 0,5 градуса. Вполне возможно, что для таких деталей, как шестерни, нулевые наклоны могут не быть существенными для удовлетворения проектных спецификаций. Наклоны помогают избежать трудностей отделения деталей от форм с минимальным или нулевым ущербом. Хорошая конструкция наклона обеспечивает эффективное производство и лучшее качество изготавливаемой детали.

Проблемы обработки материалов POM

Что делает POM сложным для обработки? Что ж, определенные факторы определяют его оптимальную работу. Поскольку POM имеет слабую или низкую устойчивость к высоким термическим условиям. Операторы пресс-форм учитывают несколько факторов во время литья под давлением. К таким факторам относятся контроль температуры, уровень влажности, параметры формования и усадка. Эти элементы важны для успешного производства высококачественных деталей из POM методом литья под давлением.

Нагревать

Одним из наиболее важных аспектов, которым необходимо управлять при литье под давлением POM, является нагрев. При нагревании до температуры выше 210 °C материал подвергается термической деградации. Это разрушение приводит к образованию побочных продуктов, которые являются едкими и в конечном итоге влияют на литьевую форму. Температура формы должна быть в пределах 60-100 °C для достижения наилучшего результата. Кроме того, короткие циклы нагрева также полезны, поскольку они не оказывают слишком большого давления на материал. С повышением температуры должно сопровождаться уменьшением времени пребывания для достижения качества.

Влага

Влагопоглощение POM довольно низкое и составляет от 0,2 до 0,5%. Однако рекомендуется, чтобы смола POM была высушена перед обработкой, чтобы получить наилучшие результаты. Время высыхания обычно составляет от 3 до 4 часов, в зависимости от марки POM. Это важно, чтобы уровень влажности был низким во время формования, чтобы уменьшить возникновение дефектов. Тщательная подготовка позволяет избежать проблем, связанных с влажностью во время инъекций.

Параметры формования

Правильный параметр формования должен поддерживаться для литья под давлением POM. Успешное давление впрыска, определенное как 70-120 МПа, обеспечивает хорошую повторяемость эксперимента. Также желательна средняя или высокая скорость впрыска для достижения плавного производства детали. Управление формованными деталями требует надлежащего контроля параметров, чтобы гарантировать, что формованные детали соответствуют определенным спецификациям. Тщательно отслеживая эти параметры, можно повысить качество конечного продукта.

Усадка

Усадка является обычной проблемой для материалов POM, включая Delrin®. Скорость усадки обычно составляет от 2 до 3,5 процентов на этапе охлаждения цикла. Большая часть усадки происходит, когда деталь все еще находится в форме, а остальная часть — после выталкивания. Неармированный гомополимер POM демонстрирует большую усадку, чем сополимерные материалы. Эти скорости усадки необходимо учитывать при проектировании формы, чтобы соответствовать желаемым размерам.

ЛИТЬЕ ПОМ ПОД ДАВЛЕНИЕМ

Недостатки литья под давлением ацеталя

Хотя ацетальное формование предлагает несколько преимуществ. Оно также имеет свои ограничения и недостатки. Кроме того, ацетальные формы сопряжены со многими проблемами. Эти ограничения должны быть тщательно учтены в процессе формования, чтобы компании могли добиться получения высококачественных конечных продуктов.

Плохая устойчивость к погодным условиям

Ацеталь очень уязвим к деградации. Обычно, в ситуациях, когда он подвергается воздействию ультрафиолетового света или УФ-излучения. Это происходит потому, что постоянное воздействие может вызвать значительные изменения цвета и в конечном итоге повлиять на их эксплуатационные характеристики. УФ-излучение ухудшает эстетическую ценность и физически ослабляет материал. Более того, УФ-излучение разрушает структуру полимеров. Следовательно, необходимо использовать стабилизаторы для повышения устойчивости ацеталя к атмосферным воздействиям. Эти стабилизаторы не могут полностью предотвратить деградацию в течение длительного времени на открытом воздухе, что затрудняет использование ацеталя для наружных работ.

Хрупкость

В твердом состоянии ацеталь обладает высокой устойчивостью и жесткостью, но при особых обстоятельствах подвержен хрупкому разрушению. Температура Низкая температура влияет на характеристики материала ацеталя и делает его склонным к растрескиванию или разрушению при ударе. Однако эта хрупкость является недостатком в любых приложениях, где желательна высокая ударная прочность, особенно при низких температурах. Существуют значительные проблемы при проектировании изделий, отлитых из ацеталя, чтобы они могли выдерживать удар без разрушения.

Что касается влияния процесса формования ацеталя на механические свойства деталей, следует принять во внимание следующие соображения.

Проектирование литьевой формы из ацеталя

При проектировании приложения с использованием ацетального материала важно правильно подобрать форму, поскольку она определяет качество и стабильность конечного продукта. Вот несколько ключевых рекомендаций по проектированию, которым нужно следовать:

  • Диаметр рабочего колеса: Диаметр питателя рекомендуется выбирать в диапазоне от 3 до 6 мм, чтобы обеспечить свободное течение материала во время впрыска.
  • Длина ворот: В идеале длина литника должна быть около 0,5 мм, чтобы обеспечить надлежащую регулировку пропускной способности материала. Это улучшает однородность формы, так что не образуется дефектов при заполнении формы материалом.
  • Диаметр круглого затвора: Это должно быть от половины до шести толщин формуемой детали. Правильный выбор размера литников исключает такие случаи, как недостаточные выстрелы и линии сварки.
  • Ширина прямоугольных ворот: Ширина прямоугольных литников по проекту должна быть не менее двух толщин продукта. В идеале она должна составлять около 0,6 толщины стенки, если речь идет о структурном усилении сосуда.
  • Угол наклона: Для простого извлечения отформованной детали без какого-либо истирания поверхности предлагается угол наклона формы от 40 до 130.

Предварительная сушка ацетального материала

Даже если у него высокое значение поглощения влаги, ацетальную часть рекомендуется предварительно высушивать перед литьем под давлением для смолы. Предварительная сушка также уменьшает присутствие некоторой формы влаги, которая является разрушительной, например, образование пустот или пузырьков. Процесс сушки должен проходить при температуре 80–100 °C и должен занимать 2–4 часа. Правильная сушка также важна, поскольку она помогает сохранить различные характеристики материалов, а также облегчает формование без расхода.

Контроль температуры формования ацеталя

Когда дело доходит до литья под давлением ацеталя, очень важно поддерживать как влажность, так и температуру расплава для улучшения результатов. Температура формы должна поддерживаться в пределах от 75 до 120 градусов по Цельсию, а температура расплава — в пределах от 190 до 230 градусов по Цельсию (374 и 446 по Фаренгейту соответственно). Такие параметры, как точное регулирование температуры, также решают такие проблемы, как деформационная усадка или даже плохая отделка поверхности. Точное регулирование тепловых условий помогает равномерно охлаждать и, следовательно, минимизировать напряжения при улучшении размерных характеристик конечного продукта.

Давление впрыска

Для каждого материала требуется определенное давление впрыска, которое должно быть достигнуто для обеспечения определенного качества детали. Диапазон давления находится в диапазоне 40–130 МПа в зависимости от скорости течения расплава ацеталя, толщины и размеров литника и детали. При низком давлении форма может быть заполнена ненадлежащим образом, а при высоком давлении вероятны заусенцы или другие дефекты. Оптимальное давление важно для создания надлежащего формирования детали и исключения дефектов.

Скорость литья под давлением

Скорость впрыска также является еще одним фактором, который сильно влияет на процесс формования ацеталя. В зависимости от образования лужи скорость впрыска в форму варьируется от умеренной до высокой, чтобы избежать образования дефектов при заполнении формы. В случае низкой скорости на поверхности видны следы течи или поверхностные дефекты. С другой стороны, высокая скорость может привести к тому, что называется струйным или сдвиговым перегревом, что плохо сказывается на прочности и чистоте поверхности большинства деталей. Благодаря изменению скорости впрыска можно устранить дефекты формования, а также повысить производительность формования.

Эти соображения позволяют производителям повышать эффективность своих литьевых деталей из ацеталя путем управления параметрами и возникающими проблемами. Чтобы наилучшим образом использовать положительные свойства ацеталя, избегая его недостатков, необходимо точно настроить некоторые аспекты конструкции пресс-формы, обработки материалов, а также самого процесса.

Заключение

Ацеталь или полиоксиметилен — тип литого под давлением полукристаллического термопластика. Этот материал обычно используется в механических деталях, таких как втулки, подшипники, шестерни и звездочки.

По сравнению с металлами и другими пластиками ацеталь имеет низкий коэффициент трения и высокую жесткость. Эти особенности значительно улучшают его износостойкость, и, таким образом, полученные изделия долговечны.

В совокупности эти характеристики делают ацеталь материалом выбора для многих инженерных приложений. Правильная обработка и проектирование оборудования повышают его эффективность и долговечность в различных отраслях промышленности.

Внедрение ацеталя в производственные процессы может привести к повышению эффективности и снижению частоты технического обслуживания механического оборудования.

 

литье под давлением толстая стенка

Литье под давлением — это общий метод, который обычно используется в обрабатывающей промышленности. Здесь материал под высоким давлением вдавливается в полость штампа. Обычно на этапе проектирования толщина стенки детали является одним из самых важных соображений. Поэтому в этой статье мы обсудим толщину стенки, ее связь с литьем под давлением и ее влияние на качество детали и производственные возможности.

Как бы вы определили толщину стенки литья под давлением?

Толщина стенки литья под давлением является мерой толщины стенок формованной детали, изготовленной с помощью процесса литья под давлением. Это величина в миллиметрах от одной из самых внешних поверхностей детали до другой самой внешней поверхности. Более того, толщина стенки, возможно, является наиболее важной, так как она определяет способность формованной детали противостоять механизмам отказа. К ним могут относиться текучесть, коробление, коробление и косметические дефекты. Толщина стенки всегда должна проектироваться с учетом определенных условий, т. е. материала, функционирования детали, конструкции и используемого формовочного оборудования. Таким образом, выбор подходящей толщины стенок имеет решающее значение для поставки желаемых деталей.

толщина стенки литья под давлением

Насколько важна равномерная толщина стенок?

Равномерная толщина стенок очень важна, когда речь идет о высоком качестве. Она помогает обеспечить отсутствие дефектов и структурную прочность литьевых деталей, а также повышает структурную целостность. Кроме того, она помогает повысить эффективность и оптимизировать использование материалов. Итак. Давайте подробнее обсудим важность равномерной толщины стенок.

1. Влияние на качество детали

Итак, прежде всего, равномерная толщина стенки обеспечивает равномерное охлаждение, а также предотвращает внутренние напряжения и деформации. Кроме того, она помогает поддерживать точные размеры, что позволяет избежать дефектов поверхности, т. е. утяжин и коробления. Кроме того, она повышает как функциональность, так и эстетику готовой детали.

2. Уменьшение количества дефектов

Во-вторых, если толщина стенки равномерна, это в конечном итоге уменьшает коробление и утяжины. Это способствует равномерному охлаждению и снижает внутренние напряжения, поэтому в конечном итоге это дает нам более прочные и долговечные детали с меньшим количеством слабых мест.

3. Структурная целостность

Равномерная толщина стенки обеспечивает сбалансированное распределение нагрузки для повышения прочности и долговечности. Кроме того, она улучшает механические свойства изделий, т. е. прочность на растяжение и ударопрочность, обеспечивая надежную работу.

4. Повышение эффективности производства

Это также облегчает проектирование пресс-форм и процессы литья под давлением. Это сокращает время цикла и производственные затраты. Кроме того, это также способствует более быстрому и лучшему охлаждению и оптимизирует производственный процесс.

Материальные соображения при литье под давлением

Ниже приведены рекомендации по выбору материала для определения толщины стенки при литье под давлением.

  1. Тип: Примеры: термопластики, включая АБС и ПК; термореактивные материалы, такие как эпоксидные смолы; эластомеры, такие как силиконовый каучук; и ТПЭ.
  2. Поток: Заполнение формы зависит от вязкости, где продукт должен быть тонким. Требуется материал с высокой текучестью, а где требуется толщина, лучше всего подойдет материал с низкой текучестью.
  3. Усадка: Металлы из расплавленного состояния уменьшаются в размерах и переходят в твердое или литое состояние; это учитывается при проектировании формы для изготовления детали нужного размера.
  4. Сила и гибкость: Дополнительные факторы включают жесткость и прочность, поскольку они определяют толщину стены во время строительства для обеспечения надежного внешнего вида конструкции.
  5. Сопротивление: устойчивость к воздействию тепла и химикатов, что обеспечивает длительный срок службы в любых условиях эксплуатации.
  6. Отделка поверхности: Характеристики формовочного материала влияют на качество поверхности и внешний вид формованной детали, повышая ее эстетичность и гладкость.
  7. Стоимость и воздействие на окружающую среду: К ним относятся себестоимость единицы материала, возможность его переработки и его соответствие стандартам устойчивого развития.

Итак, в следующей таблице описаны подходящие диапазоны, которые может поддерживать соответствующий материал; ниже представлена толстостенная литьевая деталь, которую мы изготовили из материала ПК, узнайте больше о литье под давлением ПК.

Толстостенное литье под давлением

 

Материал Типичный диапазон толщины стенки:
АБС 1,0–3,0 мм
Поликарбонат (ПК) 1,0–3,0 мм
Полипропилен (ПП) 0,8 – 2,5 мм
Полиэтилен (ПЭ) 1,0–3,0 мм
Нейлон (ПА) 1,0–3,0 мм
Ацеталь (ПОМ) 0,8–3,0 мм
Полиэтилентерефталат (ПЭТ) 1,0–3,0 мм
Поливинилхлорид (ПВХ) 1,0–3,0 мм
Акрил (ПММА) 1,0–3,0 мм
Полиэтиленвинилацетат (ЭВА) 1,0–3,0 мм
Термопластичные эластомеры (ТПЭ) 1,0–3,0 мм
Эпоксидная смола 1,0 – 5,0 мм
Силикон 1,5 – 6,0 мм

Рекомендации по проектированию толщины стенки при литье под давлением

Ниже приведена краткая таблица, которая поможет нам рассчитать оптимальную толщину стенки при литье под давлением.

 

Руководство Описание
Общие практические правила ● Поддерживайте равномерную толщину для предотвращения дефектов.

● Гарантируем плавные и густые переходы.

Минимальная толщина стенки ● Зависит от текучести материала; материалы с высокой текучестью могут иметь толщину 0,5–1,5 мм.

● Убедитесь, что минимальная толщина обеспечивает прочность.

● Обеспечьте полное заполнение формы.

Максимальная толщина стенки ● Более толстые стенки (>4 мм) увеличивают время охлаждения и цикла.

● Оптимизация для снижения затрат и веса.

● Более толстые стенки могут привести к образованию утяжин и пустот.

Структурные/функциональные требования ● Более толстые стенки для деталей с высокой нагрузкой.

● Определенная толщина для тепловой и электроизоляции

● Сбалансированная толщина для гибкости и прочности.

Проектирование с учетом технологичности ● Убедитесь в совместимости дизайна и потока материалов.

● Обеспечьте сквозняки в 1-2 градуса для легкого выброса.

● Укрепляйте тонкие стены, не добавляя им объема.

Моделирование и тестирование ● Используйте CAE для прогнозирования и устранения проблем.

● Испытание прототипов для проверки конструкции.

Инструменты и ресурсы для оптимизации толщины стенки

Вот некоторые инструменты и ресурсы, которые помогут вам повысить эффективность толщины стенок при литье под давлением.

Программные инструменты для моделирования

Он эффективно используется в литье под давлением для определения подходящей толщины стенки. Он играет очень важную роль в определении толщины стенки. Эти инструменты предоставляют информацию о том, как будет транспортироваться материал и как он ведет себя в процессе литья под давлением. Таким образом, проектировщики могут предотвратить или решить некоторые проблемы, которые могут возникнуть в ходе фактического процесса литья. Основные преимущества и особенности включают:

  1. Анализ потока: Он имитирует процесс попадания расплавленного материала в форму. Затем он показывает части, где материал может не течь должным образом или где происходит образование воздушных ловушек.
  2. Анализ охлаждения: Использует компьютерное моделирование для прогнозирования схем охлаждения, чтобы охлаждение происходило с равномерной скоростью. Таким образом, это помогает устранить такие проблемы, как деформация и утяжины.
  3. Анализ напряжений: Проверьте напряжения в детали, чтобы подтвердить толщину стенки. Проверяет, является ли она оптимальной и достаточен ли уровень напряжения для предполагаемого применения, но не слишком ли он высок.
  4. Алгоритмы оптимизации: Предложить изменения, которые следует внести в толщину стенки и любые другие характеристики конструкции. Поскольку это может повлиять на возможность производства детали и эффективность ее работы.

Некоторые из известных программ моделирования для литья под давлением — Auto Desk Mold Flow, Solid Work Plastics и Moldex3D. Все они помогают проектировщикам проектировать секции для оптимизации решений без дефектов.

2. Варианты прототипирования

Существует несколько возможных типов прототипирования. Это означает, что проектировщики могут вносить важные физические и реально-формирующие корректировки по сравнению с моделируемыми моделями. Кроме того, эти варианты направлены на изготовление детали, поэтому эти методы прототипирования включают:

  • 3D-печать (аддитивное производство): Позволяет разрабатывать прототипы на более высокой скорости, сохраняя при этом различную толщину боковых стенок. Наиболее очевидным преимуществом является то, что это недорого для быстрого тестирования различных конструкций. Кроме того, это могут быть как прототипы формы, так и функции.
  • Обработка на станках с ЧПУ: Предлагает созерцательные прототипы, которые использовали производственные материалы, так что результат почти идеален. Этот метод позволяет идентифицировать характеристики механической части и ее поведение в реальных условиях эксплуатации.
  • Мягкая оснастка: Это характеризуется использованием малопрочных и быстроформующихся штампов для производства небольшого количества деталей по сравнению с литьем под давлением. Таким образом, этот подход выгоден при оценке процесса формования, а также при определении толщины стенки. Он также помогает стандартизировать весь тип пресс-формы.

Какие факторы влияют на толщину стенки при литье под давлением?

На толщину стенки при литье под давлением могут влиять многочисленные факторы. Давайте обсудим эти факторы подробно:

1. Свойства материала

К таким свойствам могут относиться:

  • Вязкость: Если говорить о материалах с низкой вязкостью, то они легко текут в тонкие секции и позволяют делать более тонкие стенки. В то время как для материалов с высокой вязкостью могут потребоваться более толстые стенки для полного заполнения формы,
  • Усадка: Материал с высоким значением усадки может потребовать более толстых стенок. Таким образом, они могут учитывать изменения размеров при охлаждении.
  • Сила и гибкость: Механические свойства, то есть прочность на разрыв и гибкость, определяют толщину стенки для оптимальной производительности.

2. Требования к проектированию

На толщину стенки могут влиять следующие требования к конструкции.

  • Функциональные требования: Все зависит от детали, которую вам нужно изготовить. Если это структурная деталь, то стенки должны быть толще, чтобы они могли быть жесткими. С другой стороны, косметической части потребуются более тонкие стенки, чтобы они могли достичь наилучшего внешнего вида.
  • Эстетические соображения: Тонкие стенки могут обеспечить элегантный внешний вид. С другой стороны, более толстые стенки достаточно прочны, и они могут избежать дефектов, например, утяжин или деформаций.
  • Сложность конструкции: Сложная геометрия может потребовать различной толщины стенок. Таким образом, они могут гарантировать, что все элементы будут сформированы правильно, и деталь можно будет легко извлечь из формы.

3. Производственные возможности

  • Проектирование и изготовление пресс-форм: Формы с высокой точностью могут легко обрабатывать более тонкие стенки, а более простые формы требуют более толстых стенок для надлежащего заполнения. Таким образом, они могут гарантировать качество детали.
  • Давление и скорость впрыска: Машины с высокой производительностью позволяют изготавливать более тонкие стенки, а также обеспечивают более высокое давление и скорость.
  • Скорость охлаждения: Равномерное охлаждение весьма важно, так как более толстые стенки требуют более длительного времени охлаждения. Это напрямую влияет на время цикла и эффективность производства. Таким образом, усовершенствованные системы охлаждения помогают создавать более тонкие стенки и также будут поддерживать качество.

Заключение

Подводя итог, можно сказать, что толщина стенки литья под давлением обеспечивает высококачественные, хорошо сформированные и экономически эффективные детали. Поэтому важно тщательно учитывать свойства материала и требования к конструкции, чтобы помочь конструкторам поддерживать баланс. Этот баланс увеличит производительность и технологичность детали. Более того, вы можете использовать различные передовые программы моделирования и варианты прототипирования для улучшения всего процесса. Эти инструменты также будут создавать конструкции с минимальными дефектами. Кроме того, достижения в области материалов, технологии моделирования, мониторинга в реальном времени и устойчивых методов позволят улучшить литье под давлением. Таким образом, оно может оптимизировать толщину стенки более точно и эффективно.

литье под давлением больших объемов

Часто задаваемые вопросы

Какие факторы влияют на выбор материала при литье под давлением?

Тип материала определяется на основе таких свойств, как прочность на разрыв и эластичность, электронная микроскопия, тепловая и химическая стойкость. Помимо этого, он также зависит от внешнего вида и гладкости материала, его стоимости и возможности переработки.

Каковы наиболее распространенные дефекты при литье под давлением и как их можно предотвратить?

К наиболее частым дефектам относятся утяжины, возникающие из-за разной скорости охлаждения, коробление, возникающее из-за внутреннего напряжения, и заусенцы, представляющие собой чрезмерное накопление материала на литьё под давлением линии разъема. Этих проблем обычно можно избежать, соблюдая наилучшие процедуры проектирования и регулируя уровни нагрева, давления и другие условия, которые могут повлиять на продукт.

Какую пользу программное обеспечение для моделирования может принести процессам литья под давлением?

Компьютерное моделирование позволяет конструкторам и инженерам моделировать и анализировать конструкции пресс-форм, выбор материалов и факторы процесса в виртуальной среде. С помощью этого программного обеспечения можно предсказать закономерности движения материалов, скорости охлаждения и другие параметры до того, как физические пресс-формы будут разработаны для использования. Таким образом, это помогает повысить качество и технологичность детали.

Каковы преимущества использования добавок или наполнителей в литьевых материалах?

Добавки и наполнители могут улучшить характерные свойства материалов, включая прочность, жесткость, огнестойкость и ударную вязкость. Они также могут улучшить обрабатываемость и снизить стоимость материала за счет добавления большего объема другого, более доступного материала к смоле. Однако следует приложить много усилий для обеспечения совместимости, равномерного распределения и минимального вмешательства в другие компоненты.

литье под давлением HDPE

Thermoplastic injection molding has become the most applicable plastic manufacturing process. It is renowned for producing products of high standard quality in minimal turnaround and large quantities. The increasing need for high quality plastic products in different sectors has boosted the application of thermoplastic materials.

These materials are based on polymer resins, and when heated, they turn into a homogeneous liquid that becomes solid when cooled. Injection molding employs thermoplastics and thermosetting plastics or even elastomeric materials to form high-performance moldable parts or products. Newer technologies in injection molding thermoplastic and better molds have enabled the reduction of costs, better looks, and better manufacturing prospects.

Why Are Thermoplastics Materials Used in Injection Molding?

 

Thermoplastics are used in injection molding since they melt at high temperatures and crystallize at low temperatures. This property makes them ideal for being recycled and formed into different forms and structures. They are the most preferred materials in industries due to their flexibility and versatility of use.

thermoplastic injection molding

How To Produce Injection Molded Thermoplastic Products?

Thermoplastic injection molding is one of the most fundamental processes in contemporary production. It entails the creation of a variety of plastic products through the employment of thermoplastic polymers.

Step 1. Appropriate Material Selection

The material type used determines the final product’s functionality, appearance, and durability. Select materials by considering their mechanical properties, heat stability, and specific use.

Step 2. Material Preparation

This process entails drying raw plastic pellets to eliminate moisture. Because moisture content significantly impacts and is destructive to the melting process and the molded part. These prepared pellets are then fed into the hopper of the injection molding thermoplastic machine through a conveyor belt.

Step 3. Melting

The plastic pellets are melted in a barrel which entails a reciprocating screw. These pellets then take the form of molten lava or red hot liquid. During this phase, temperature controls are crucial to obtain the right consistency and the flow of the molten plastic to the required standard.

Step 4. Injection

As the name suggests, the molten plastic is injected into the mold cavity by applying highly controlled injection pressure. The precise control over this process determines the part’s exact specifications and finishes. The resulting parts are then cooled down and solidified at optimal conditions.

Step 5. Ejection

The required part is then taken out from the mold by using ejector pins after the solidification. This process must be timed and controlled so that it does not harm the part and that it is released properly.

Step 5. Post-Processing

This phase is typically used to cut to shape parts into desired shapes. The parts can be painted, anodized, trimmed, polished, etc, depending on the required functionality and aesthetics.

What are the Critical Parts of a Thermoplastic Injection Molding Machine?

A thermoplastic injection molding machine is made of several parts. Some commonest parts include;

Clamping Unit

The clamping unit tightly holds the two parts of the mold to ensure that they do not open during the injection. It has to apply enough force to resist the force exerted by the molten plastic being injected to ensure that the mold does not open and the part is well formed.

Injection Unit

The injection unit, which is said to be the heart of the machine, is in charge of heating the plastic material and injecting it into the mold cavity. It has a heated barrel with a screw that moves back and forth to force the plastic through a nozzle into the mold and maintain a steady supply of material.

Dwelling and Cooling System

Once the molten plastic has been injected into the mold, the dwelling and cooling system keeps pressure to guarantee that the plastic occupies all the mold cavities and solidifies into the right shape. Cooling is a very important process in the reduction of the cycle time as well as enhancing the quality of the final product.

Ejection Process

After the plastic has been set, the ejection process starts. The mold is opened, and the ejector pins, which are provided on the side of the mold, throw out the finished part from the mold cavity. This process must be done carefully and at the right time so that the part is not damaged and the removal is done well.

Mold Tool

The mold tool is a negative one and is made from steel or aluminum and forms the final product. It defines the surface finish and size of the product. The tool has two halves that are connected at the center and which are injected apart from each other.

термопластик литьевой

Material Types Are Used in Thermoplastic Injection Molding?

The are many type of thermoplastic injection molding materials used to create molding products include;

ABS (Акрилонитрилбутадиенстирол) is characterized by high impact strength, high rigidity, and low shrinkage. This makes it ideal for automotive components, consumer electronics, and toys where durability and mechanical stress resistance are of paramount importance. Read more about Литье под давлением АБС.

Полиамид (Нейлон) has high strength, thermal stability, and wear resistance. These attributes make it ideal for use in automotive parts, mechanical products, and other consumer products that require strength and performance. Read more about литье под давлением нейлона.

Поливинилхлорид (ПВХ) has the advantages of high strength, good chemical resistance, and fire resistance. Some of the uses are plumbing pipes, medical tubing, and outdoor furniture, which makes it a material that can be used in many fields.

Полиэтилентерефталат (ПЭТ) is valued for its transparency, mechanical properties and food contact approval. This material is used in beverage bottles, packaging materials, and synthetic fabrics because of its strength and clarity.

PMMA or Acrylic offers sound light transmission and is not affected by weathering or UV radiation. These features make it suitable for signs, lamps, and windows where transparency and strength are desirable. Read more about Литье под давлением ПММА.

Полистирол (ПС) is a lightweight material, relatively cheap, and often used in disposable cutlery, CD cases, and insulating materials because it is easy to shape and relatively cheap. Read more about литье под давлением ПС.

Термопластичный полиуретан (ТПУ) is characterized by high elasticity, oil resistance, and abrasion resistance. It is applied in the production of soles and insoles of shoes, flexible medical tubes, seals and gaskets of automobiles, etc. Read more about Литье под давлением ТПУ.

Полиоксиметилен (ПОМ) has high rigidity, low wear rate, and good resistance to shrinkage and swelling. It is suitable for applications that call for strength and accuracy, like gears and bearings, electrical parts, and consumer products. Read more about литье под давлением ПОМ.

Polybutylene Terephthalate (PBT) has good electrical properties, heat and chemical resistance. It is widely applied in electrical parts, automotive parts, and under-hood parts because of its high strength and heat resistance.

Ударопрочный полистирол (HIPS) is characterized by high impact strength and good processability. It is used in model making, sign writing, and in the housing of consumer electronic products where strength and stability are required.

Thermoplastic elastomers or TPE are materials that have characteristics of both thermoplastics and rubber and are flexible and elastic. They are applied to sealing and gasket applications, soft feel parts in household goods, and handles. Read  more about Литье под давлением ТПЭ.

Polyphenylene Oxide (PPO) is well known for its heat resistance, low thermal expansion coefficient and electrical insulation. It is applied in automotive parts, electrical parts, and appliances that need to be hard-wearing and heat-resistant.

LCP is characterized by high mechanical strength, high-temperature stability, and good chemical resistance. It is applied in high-voltage electrical contacts, microwave oven parts, and other critical uses.

Полиэфиримид (ПЭИ) has high heat, strength, and flame resistance. It is used in aerospace parts, medical equipment, and other places where high stress is experienced.

Polyether ether ketone (PEEK) is characterized by high-temperature stability, chemical inactivity, and mechanical characteristics. It is applied in aerospace parts, automotive applications, and medical applications where strength and toughness are needed. Read more about Литье под давлением ПЭЭК.

Полифениленсульфид (ПФС) has high heat resistance, chemical resistance, and low thermal shrinkage. It is used in automotive, electrical and electronics and in coatings that require chemical and heat stability. Read more about литье под давлением ППС.

Styrene Acrylonitrile (SAN) is preferred for its clarity, stiffness and resistance to chemicals. These properties make it suitable for use in food containers since fats and oils are some of the things that the containers should be able to withstand. SAN is also often applied in kitchenware because of its high heat resistance and in bathroom fittings because of chemical resistance.

Acetal (Polyoxymethylene, POM) is highly stiff, self-lubricating, and has good dimensional stability. Acetal is also used in electrical insulators and consumer goods. Some common examples include; zippers and window latches, where strength and wear resistance are required.

Ethylene Vinyl Acetate (EVA) is known for its flexibility, high-impact strength, and clarity. It is a rubber like material that can be molded and recycled and is used in foam products used in sports equipment padding, footwear such as soles and insoles, and flexible packaging films.

Polyurethane (PU) is a flexible polymer that is applied to foam furniture and car seats because of its comfort and sturdiness. Also, PU is used in wheels and tires of industrial and recreational vehicles and automotive interior parts such as dashboards.

ППСУ is highly heat resistant, very tough, and can withstand steam sterilization, which makes it suitable for challenging conditions. PPSU is widely used in medical instruments that are often sterilized, aircraft interiors that are exposed to high temperatures and stress, and plumbing where heat and mechanical stress are essential. Read more about Литье под давлением PPSU.

Polyethylene Naphthalate (PEN) is a variant of PET but has better barrier properties, heat and chemical resistance. PEN is applied in packaging materials that need to be very strong and have good barrier properties and in electronics where parts need to be dimensionally stable and electrical insulating.

Polybutylene’s peculiar characteristics, like heat and pressure resistance, make it ideal for use in piping systems in hot and cold water distribution and under-floor heating systems where high temperature and pressure are required.

Polymethylpentene (PMP) is a rather special type of thermoplastic due to its transparency and heat resistance. PMP is used in laboratory equipment where chemical resistance and clarity are required and in microwave cookware because of its heat resistance and quality food preparation.

Polysulfone (PSU) is characterized by high heat resistance, strength, and transparency. These characteristics make it ideal for use in medical devices, especially those that are reusable and need to be sterilized, water filtration systems because of their stability and strength, and electrical parts where insulation and heat resistance are important.

Injection Molding Nylon

Thermoset Vs Thermoplastic Injection Molding: Key Differences

Термопластичное литье под давлением

This thermoplastic molding technique uses materials such as; polyethylene and nylon that can be reheated and recycled for second use. It is perfect for producing numerous components that require flexibility, impact strength, or clarity.

Thermoset Injection Molding

This method uses materials such as epoxy and polyester, which undergo a chemical reaction when exposed to heat and harden to a specific form. They cannot be reshaped once they have cooled down. It is used where high strength, heat or chemical resistance is required, but unlike thermoplastics, they cannot be recycled

Therefore, the major distinction is that thermoplastics can be recycled through melting and thermosets are permanently molded and cannot be remolded, providing different strength as per the requirement.

Industrial Applications of Thermoplastic Injection molding

Автомобильная промышленность: Thermoplastic injection molding is widely applied for fabricating interior to exterior components of automobiles like dashboard parts, bumpers, and door panels of cars. It is also useful for creating under-the-hood parts such as fluid reservoirs and housings because of its strength and accuracy.

Медицинская промышленность: In the medicare sector, thermoplastic injection molding is very significant in the manufacturing of disposable syringes, surgical instruments, and enclosures for medical devices. Due to its precision in developing complex patterns, it is essential to develop parts utilized in diagnostic tools and prosthetics.

Бытовая электроника: In electronics, this molding process is used in the production of enclosures of smart phones, remote controls, and computer parts, among others. It is also used in the fabrication of battery casings and connectors because of its strength and versatility of shape.

Construction Industry: In construction, thermoplastic injection molding is applied in the production of pipe fittings, plumbing parts, and electrical enclosures because of the strength and durability of the material. It is also applied in the production of insulating materials and window frames due to its strength and heat resistance.

Toys and Recreation: This molding process is used in creating action figures, puzzles, and boards games that have designs that are complex. It is also used in the manufacture of outdoor items such as garden implements and children’s play equipment since it can yield strong and safe products.

Household Products: Thermoplastic injection molding is vital in the production of kitchen appliances, containers, and utensils because of the heat and chemical resistance. It is also used in making storage bins and cleaning tools due to its strength and simplicity.

Thermoplastic Injection Molding: Common Defects & Remedies

Below are typical challenges encountered during the process and strategies to address them effectively:

Insufficient Filling: This is so when the mold is not fully filled. To address this, one may increase injection speed or pressure, check the temperature of the material, or increase the size of the gate.

Flash Formation: This is a condition where there is the formation of a thin layer of plastic on the edge of the part after it has been molded. This can be solved by either lowering the injection pressure or clamping force or by checking the mold for any damages.

Warping: If the part distorts during cooling, then consider uniform cooling temperature, cycle time to optimal state.

Sink Marks: These are small contours on the part’s surface and normally occur in varying sizes. To prevent these, increase the cooling time or reduce the holding pressure.

Burn Marks: These occur when a material is overheated or air is trapped and may cause black or brown discoloration on the part surface. This can be overcome by reducing the melt and mold temperature and, at the same time, increasing the injection speed so as to avoid overheating or the formation of air pockets.

Such changes should enhance the quality and productivity of the injection molding process.

Подведение итогов

Thermoplastic injection molding remains one of the most significant pillars of innovation that offers flexibility and effectiveness in developing quality products. It is used in automotive and medical industries, consumer electronics and many more industries proving its versatility and efficiency.

Companies like Sincer Tech are the best examples of plastic injection molding services that provide full-service solutions with a focus on quality and accuracy. Our company specializes in overmolding and insert molding and uses a variety of materials to guarantee that each product is of the highest quality.

They offer a wide range of thermoplastics, and their experience in prototype molding and mass production makes them among the best. Whether it is a prototype or a mass production project, Sincere Techs’ dedication to the advancement of technology and the production of high-quality products is evident in all of their work.