Plastmateriale med høy temperatur

Herdeplast vs. termoplast er viktig. Denne bloggen hjelper deg å forstå begge deler. Finn ut mer om PE, ABS, PP og PVC. Diskuter kjemisk struktur, termisk stabilitet og elastisitet.

Finn fordeler og ulemper. Lær hvordan ulike bransjer bruker dem. Valg av materiale er avgjørende. Vær oppdatert på disse grunnleggende plasttypene. Gjør smarte valg.

Hva er herdeplast?

Herdeplast herder ved oppvarming. Den har en høy tverrbindingstetthet. Dette er gunstig for bildeler. De inkluderer epoksyharpikser som er sterke. Varmebestandigheten er høy, 150-200 °C. Det kan ikke støpes om. Fenolene er sprø, og de kategoriseres under herdeplast. Det er bra for elektriske isolatorer. Dette materialet forblir stivt når det er satt. De bruker det på mange måter. Herdeplast har permanente bindinger.

Hva er termoplast?

Termoplast smelter ved oppvarming. Konsistensen er myk og fleksibel. De brukes til leker og flasker. Smeltepunktet ligger på 100-250 °C. Dette kan støpes om mange ganger. Noen eksempler er polymerer som polyetylen (PE), ABS, PC, PP, PEEK, akryl, Nolon osv. Den egner seg godt til hverdagslige gjenstander. Den har lav styrke sammenlignet med herdeplast. Den avkjøles og herder raskt. De har inkorporert termoplast i produktene sine på forskjellige måter. Det er det virkelige skillet.

Hva er de viktigste forskjellene mellom herdeplast og termoplast?

Kjemisk struktur

Herdeplast vs. termoplast viser også forskjellige former. Herdeplast kan bare utvikle faste bindinger mens de festes. Det forblir sterkt. Termoplaster har kjedeledd. Det betyr at de kan smelte og omformes. De bruker polymerer som PE og ABS. Herdeplastens tverrbindinger slutter å smelte.

Noen termoplaster, for eksempel PTFE, har den egenskapen at de mykner når de utsettes for varme. Denne fleksibiliteten gjør det enkelt å resirkulere. De intermolekylære kreftene i termoplast er ikke like sterke.

Dette er fordi formen bestemmer hvordan de brukes. Hver av dem har spesifikke bruksområder i materialer.

Produksjonsprosessen

Herdeplast vs. termoplast: Fremstillingen er forskjellig. Herdeplast stivner ved hjelp av varme eller kjemikalier. Dette skaper sterke tverrbindinger. Termoplast kan smeltes og formes ved hjelp av varme.

Nedkjølingen gjør dem faste. Herdeplaster kan ikke omformes. Termoplaster som PP kan ofte omformes. Fleksibiliteten gjør dem egnet til mange bruksområder. Herdeplaster passer til tøffe jobber.

Hver type er laget med forskjellige verktøy. Å kjenne til disse hjelper deg med å velge riktig. Dette avslører den beste bruken i produkter.

Varmebestandighet

Herdeplast og termoplast skiller seg fra hverandre i måten de reagerer på varme. Herdeplast er motstandsdyktig mot høy varme. De egner seg godt på varme steder. Dette gjør dem sterke. Termoplaster, inkludert PA, blir mer bøyelige når de utsettes for varme. Dette gjør dem lette å påvirke.

Herdeplast er stive ved høye temperaturer. De brukes i motorer. Termoplaster kan sprekke ved for høy varme. Dette begrenser bruken av dem. Herdeplaster mykner eller smelter ikke når de først er produsert. Det er deres varmehåndtering som avgjør hvilke bruksområder de kan brukes til.

Mekaniske egenskaper

Herdeplast og termoplast er to typer plast, men de har begge ulike egenskaper. Herdeplaster er stive og har høye mekaniske egenskaper. Derfor er de ideelle for bruk der de sannsynligvis vil bli utsatt for mye stress. De bøyer seg ikke så lett.

Selv om PVC regnes som termoplast, er de for eksempel bøyelige. Det gjør at de kan utvide seg og trekke seg sammen uten å sprekke. Herdeplaster har høy trekkstyrke.

De brukes i konstruksjonen av bygningsdeler. Termoplast er plasttyper som kan strekkes og deretter komme tilbake til sin opprinnelige form. De passer til bevegelige deler. Hver og en velges med tanke på jobben. Kunnskapen om disse hjelper oss å velge det beste materialet. Dette gjør at ting går som smurt.

Herdeplast vs. termoplast

Hvordan skiller produksjonsprosessen seg fra hverandre?

Sprøytestøping

Herdeplast vs. termoplast er morsomt! Herdeplast blir stiv når den blir varm. Det er for varme ting. Termoplast smelter med varme. Dette kan omformes. I hovedsak er IM (sprøytestøping) inneholder fat, skruer og dyser. De skyver plast. Høye trykk på opptil 2000 psi kan kjøle ned deler.

Gir, leker og kofferter dukker opp! En kjøler gjør dem faste raskt. Syklustiden er kort. Mye av arbeidet utføres av maskiner. Det gjør det enkelt. Kontrollenheter overvåker hastighet og temperatur. PP- og PE-plast benyttes.

Ekstrudering

Det er forskjell på herdeplast og termoplast! Herdeplast forblir hard. Ekstrudering tvinger plasten gjennom en dyse. Termoplast smelter og formes. Ekstrudere har beholdere, tønner og skruer.

Den former langstrakte strukturer som rør og stenger. Maskinen beveger seg raskt. Den er superlang, opptil 500 meter! Det er fart og tempo som gjelder.

Det er viktig! PE- og PVC-plast er best egnet for bruk. Skjæresystemer kutter bitene akkurat riktig. Det gjør at det blir pent. De gjør mange kontroller.

Kompresjonsstøping

Herdeplast vs. termoplast gir fine ting! Herdeplast holder seg fast. Den bruker varme former. Termoplast kan smeltes. Kompresjonsstøping bruker store former. Trykket kan være opptil 1000 tonn.

Her lages det bildeler og sånt. Hydrauliske presser legger press på plasten. Varmen strømmer jevnt. De overvåker trykk og temperatur. Derfor regnes PP og nylon som god plast.

Platen kan også varmes opp raskt. Det bidrar til at plasten sprer seg. Slippmidler slutter å klebe seg fast. Store deler blir store!

Termoforming

Herdeplast vs. termoplast betyr mange former! Herdeplast forblir hard. Termoplastiske plater varmes opp. De blir myke. Termoforming innebærer vakuum eller trykk. Det former ting som skuffer og lokk.

Varmeelementene når 200 grader. Plasten avkjøles raskt. Dette gir skarpe detaljer.

Vakuumpumper tegner formen. Hastigheten og tykkelsen er de kritiske faktorene. Det gjør at alt blir helt riktig. PP og PET er blant favorittene. Skiveskjæring fjerner overflødige deler. De sjekker hver eneste del.

Herdeplast eller termoplast

Hva er styrken til herdeplastmaterialer?

Høy varmebestandighet

Herdeplast og termoplast er ikke det samme. Herdeplast forblir stiv ved 200 °C. Den bruker epoksyharpikser. Dette betyr at komponentene i en motor fungerer mer effektivt. De løser seg ikke opp i varmt vann.

Polymerene lager kryssbindinger. Det gjør dem seige. Fenol- og epoksyforbindelser gjør det. De forandrer seg ikke ved høy varme. De brukes i fly. Høy temperatur er ikke noe problem.

Thermoset er et selskap som produserer svært robuste kjøkkenredskaper. Varmebestandigheten er rett og slett utrolig.

Dimensjonell stabilitet

Herdeplast vs. termoplast viser forskjeller. Herdeplast endrer ikke form. Den varierer ikke mye. Denne stabiliteten er avgjørende for kretskort. Dette betyr ingen vridning.

Dette opprettholder effektiviteten til delene. Epoksyharpikser brukes. De har lav krymping. Formen holder seg korrekt. Industrimaskiner krever denne stabiliteten. Herdeplast velges basert på presisjon. De opprettholder riktig størrelse. Denne stabiliteten er nøkkelen.

Elektriske isolasjonsegenskaper

Herdeplast og termoplast har sine egne spesifikke bruksområder. Herdeplast isolerer elektrisitet godt. Dette hjelper i transformatorer. Materialet skjermer mot høyspenning. Epoxy brukes til isolasjon.

Det gjør enhetene trygge. Dielektrisk styrke er høy. Bryterutstyr bruker herdeplast. Det holder elektrisiteten inne. Isolasjonen er avgjørende. Andre harpikser som brukes, er fenolharpikser. Elektroniske enheter trenger dette. Den høye dielektriske styrken er mest av alt nødvendig.

Kjemisk motstandsdyktighet

Herdeplast og termoplast er forskjellige når det gjelder hvordan de håndterer kjemikalier. Herdeplast motstår syrer. Det fungerer på de tøffe stedene. Dette hjelper i kjemiske anlegg. Epoksy- og vinylesterharpikser er tøffe.

De brytes ikke ned. De brukes i rør og tanker. Materialene holder seg gode. Den kjemiske strukturen er solid. Herdeplast oppløses ikke. Det gjør at delene fortsetter å fungere. Industriområder trenger dette. Motstandsdyktigheten er stor. Herdeplastmaterialer varer lenge.

 

EiendomHerdeplastmaterialerTermoplastMetallerKeramikkKompositterElastomerer
VarmebestandighetHøy, 250-300 °CModerat, 70-150 °CHøy, >500 °CSvært høy, >1000 °CVarierer, 100-300 °CLav, -50-150 °C
Dimensjonell stabilitetUtmerketModeratBraUtmerketBraDårlig
Elektrisk isolasjonUtmerket, 10⁸-10¹⁵ ΩGod, 10⁷-10¹⁴ ΩDårlig, ledendeUtmerket, 10¹⁰-10¹⁴ ΩVarierer, 10⁶-10¹⁵ ΩDårlig, ledende
Kjemisk motstandsdyktighetHøy, syre/baseVarierer, løsemidlerModerat, KorrosjonHøy, InertHøy, skreddersyddLav, Swell
Mekanisk styrkeHøy, 100-200 MPaVarierer, 20-100 MPaSvært høy, 200-2000 MPaSvært høy, 100-500 MPaVarierer, 50-300 MPaLav, 5-20 MPa
KostnaderLav-middelsLav-middelsHøyMiddels-høyMiddels-høyLav-middels

Tabell over styrken til herdeplastmaterialer!

 

Hva er styrken til termoplastiske materialer?

Resirkulerbarhet

Herdeplast vs. termoplast gjør valgene tydelige. ABS kan for eksempel resirkuleres. Det betyr at vi gjenbruker deler. Det er gunstig for naturen. Disse materialene kan gå over i flytende tilstand og stivne igjen.

Ekstrudere er noen av de mest maskiner som bidrar til resirkulering. PETG er også resirkulerbart. Resirkulerte materialer sparer energi. Det reduserer avfallet. Gjenbruk hjelper planeten vår. De hjelper oss med å skape nye produkter. Resirkulering er viktig.

Fleksibilitet

Herdeplast vs termoplast handler om materiale. TPU bøyer seg lett. Dette gjør lekene myke. TPE er også fleksibelt. Det strekker seg uten å gå i stykker. Disse materialene er nyttige. De kan plasseres i små rom.

Mykheten er egnet for forming. Gummilignende plast føles behagelig. Fleksibilitet er nyttig. De lager trygge produkter. Myke materialer er bra.

Motstand mot støt

Herdeplast vs. termoplast avslører klare preferanser. PA er tøft. Det betyr at det ikke vil gå i stykker. PC er også sterk. Disse tåler å bli truffet. De beskytter gjenstander. Trygge hjelmer er laget av robuste materialer.

Sterk plast varer lenge. Med dem forblir enhetene beskyttet. Det betyr noe for sikkerheten. Slagfasthet er viktig. Leker og dingser krever det.

Enkel behandling

Herdeplast vs. termoplast avslører enkle alternativer. PLA og PEEK smelter raskt. Dette gjør formingen enkel. De brukes i maskiner som 3D-skrivere. Behandlingen er rask. Det sparer tid.

PLA er morsomt til prosjekter i skolen. De trenger lav varme. Materialer som er enkle, bør brukes til barn. Det gjør det morsomt å lære. De bidrar til å skape kule ting.

Herdeplast og termoplast

Hva er utfordringene ved bruk av herdeplastmaterialer?

Ikke-resirkulerbarhet

Herdeplast og termoplast er forskjellige materialer. Herdeplast kan ikke gjenbrukes. Dette gjør dem sløsing. De bruker visse typer kjemiske bindinger. ABS og PET er forskjellige. De smelter sammen og omkrystalliserer. Herdeplast brytes ikke ned når de utsettes for varme.

Noen av variantene av epoksyharpiks er ikke resirkulerbare. Det er et spørsmål om avhending. Noen av termoplastene inkluderer polykarbonat og nylon, som er resirkulerbare. Det innebærer smelting og deretter omstøping. Dette er viktig for bærekraften.

Prosesseringsvansker

Herdeplast vs. termoplast er ganske vanskelig. Herdeplastene trenger nøyaktige temperaturer. Dette gjør dem kostbare. De bruker herdetrinn. Både BMC og SMC er former.

Polyestertermoplaster som PEEK og PVC er lette å smelte. De egner seg godt til sprøytestøping. Utstyret for herdeplaster varierer. Kompresjonsstøping er vanlig. Prosessen tar tid. Termoplaster er raskere. Valg av materialer påvirker hastigheten. Industrien foretrekker enkel håndtering.

Skjørhet

Herdeplast- og termoplastmaterialer kan være sprø. Herdeplastene går lett i stykker. Dette er et problem. Noen av dem inkluderer Duroplast og Phenolic. De liker ikke endringer, men kan gå i stykker.

Polypropylen og polystyren er eksempler på termoplaster som kan bøyes. Dette gjør dem gode til leketøy. Herdeplaster er svært stive. Molekylstrukturen er viktig. Sprøytestøping er egnet for termoplaster. Dette påvirker produktets holdbarhet. Det er viktig for sikkerheten.

Lengre herdetid

Herdeplast og termoplast herder forskjellig. Herdeplast tar lengre tid. Prosessen trenger tverrbinding. Noen av dem inkluderer UPR- og PUR-harpikser. Termoplaster avkjøles raskt.

De trenger ikke herding. Polyamid og akryl er typiske. Herdeplast trenger kontrollerte forhold. Dette kan forsinke produksjonen. Termoplaster tillater rask produksjon. Bransjen er også preget av tids- og kostnadshensyn. Hvert materiale har sine fordeler.

Hva er utfordringene ved bruk av termoplastiske materialer?

Lavere varmebestandighet

Herdeplast eller termoplast? Det spiller en rolle når ting blir varme. Herdeplast er som en superhelt mot varme. Denne typen smelter ikke. De holder seg sterke. Termoplast smelter ved 160 og 260.

Det er et problem på varme steder. Polyetylen (PE) og polypropylen (PP) smelter. Prøv å se for deg at leker eller deler av leker blir myke og flytende på grunn av varme.

Polykarbonat (PC) og akrylonitrilbutadienstyren (ABS) er noe bedre, men de smelter også. Ingeniører krever materialer som tåler høye temperaturer uten å gjennomgå noen forandring. Ved å velge riktig materiale får du ting som klær og sko til å vare lenger.

Kryping under belastning

Herdeplast vs. termoplast viser en forskjell. Kryping oppstår når ting bøyer seg gradvis. Det er et stort problem. Herdeplastmaterialer er mer motstandsdyktige mot dette. Polyvinylklorid (PVC) og polystyren (PS) er to typer materialer som er kjent for å krype under tung belastning. Dette er et problem for broer og bygninger.

Nylon og PEEK deformeres ikke når de utsettes for det. Belastningen fører til at plastens form endres. Ingeniørene velger materialer med tanke på å forhindre at det oppstår problemer. Da forblir alt sterkt og sikkert. Det er derfor valget er så avgjørende.

Høyere kostnader for typer med høy ytelse

Kostnad er også involvert i termohærdende kontra termoplastisk. Termoplast med høy ytelse koster mer. Polyeteretereterketon (PEEK) er kostbart. Det er tøft og lett. De brukes i fly og biler. Polyimid (PI) er også kostbart. Ingeniører trenger sterke materialer. De med høy ytelse håndterer stress.

Denne kostnaden er problematisk for budsjettene. Herdeplast er noen ganger billigere. De er imidlertid mindre fleksible. Økonomiske og effektive løsninger er også viktig. Å velge riktig materiale betyr å redusere kostnadene og øke kvaliteten på sluttproduktet. Det er et stort valg.

Følsomhet overfor løsemidler

Herdeplast vs. termoplast: løsemidler teller. Termoplaster kan oppløses. Dette er mulig med aceton eller benzen. Polystyren (PS) og akryl oppløses raskt. Det er et problem for drivstofftanker eller beholdere. Polyetylen (PE) og polypropylen (PP) er mer motstandsdyktige mot løsemidler.

Herdeplast tåler løsemidler godt. Epoksy og fenolplast er gode eksempler. Ingeniører velger med omhu. De vurderer hvor spesifikke elementer skal brukes. Skader fra løsemidler bør forhindres. Ved å bruke riktig materiale holder ting seg sikre og varige.

Konklusjon

Kunnskap om forskjellene mellom Herdeplast vs. termoplast hjelper deg med å gjøre det riktige valget. Herdeplast er stivt og motstandsdyktig mot varme. Termoplast er fleksibelt og kan resirkuleres. Begge har unike bruksområder. Les mer på PLASTICMOLD. Velg det materialet som passer best for ditt tilfelle. Vær bevisst og klok.

sprøytestøping tykk vegg

Sprøytestøping er en generell metode som vanligvis brukes i produksjonsindustrien. Her presses materialet under høyt trykk inn i et formhulrom. I designfasen er veggtykkelsen på en del vanligvis en av de viktigste faktorene å ta hensyn til. I denne artikkelen skal vi derfor diskutere veggtykkelse, forholdet til sprøytestøping og hvordan det påvirker emnets kvalitet og produksjonskapasitet.

Hvordan definerer du veggtykkelse ved sprøytestøping?

Sprøytestøping Veggtykkelse er et mål på tykkelsen på veggene i den støpte delen som er produsert ved hjelp av en sprøytestøpeprosess. Det er lengden i millimeter fra en av de ytterste overflatene på delen til den andre ytterste overflaten. Veggtykkelsen er kanskje den viktigste egenskapen, ettersom den avgjør hvor motstandsdyktig den støpte delen er mot feilmekanismer. Det kan dreie seg om ettergivelse, knekking, vridning og kosmetiske defekter. Veggtykkelsen må alltid utformes slik at den passer til visse forhold, f.eks. materialet, emnets funksjon, konstruksjonen og støpeutstyret som brukes. Å velge riktig tykkelse på veggene er derfor avgjørende for å kunne levere de ønskede delene.

sprøytestøping veggtykkelse

Hva er viktigheten av jevn veggtykkelse?

Jevn veggtykkelse er svært viktig når det gjelder høy kvalitet. Det bidrar til å gi feilfrie og strukturelt solide sprøytestøpte deler og øker også den strukturelle integriteten. I tillegg bidrar det til å forbedre effektiviteten og optimalisere materialbruken. Det er derfor La oss diskutere mer om viktigheten av jevn veggtykkelse.

1. Innvirkning på delkvaliteten

Først og fremst gir jevn veggtykkelse jevn kjøling og forhindrer også indre spenninger og deformasjoner. I tillegg bidrar det til å opprettholde presise dimensjoner, slik at man unngår ujevnheter i overflaten, f.eks. synkemerker og skjevheter. I tillegg øker det både funksjonaliteten og estetikken til den endelige delen.

2. Reduksjon av defekter

For det andre, hvis veggtykkelsen er jevn, vil det til syvende og sist redusere skjevheter og synkemerker. Det fremmer jevn avkjøling og reduserer indre spenninger, slik at vi til slutt får sterkere og mer holdbare deler med færre svake punkter.

3. Strukturell integritet

Den jevne veggtykkelsen gir en balansert lastfordeling som forbedrer styrke og holdbarhet. I tillegg forbedrer det de mekaniske egenskapene til produktene, f.eks. strekkfasthet og slagfasthet, og gir pålitelig ytelse.

4. Bedre produksjonseffektivitet

Det forenkler også formutformingen og sprøytestøpeprosessene. Det reduserer syklustider og produksjonskostnader. I tillegg bidrar den til raskere og bedre kjøling og optimaliserer produksjonsprosessen.

Materialhensyn ved sprøytestøping

Følgende er materialbetraktningene for injeksjonssmelting av veggtykkelse.

  1. Type: Eksempler: termoplast, inkludert ABS og PC, herdeplast som epoksyharpiks, elastomerer som silikongummi og TPE.
  2. Flyt: Formfylling avhenger av viskositet, der produktet skal være tynt. Det krever høyflytende materiale, og der det kreves tykkelse, er lavflytende materiale mest hensiktsmessig.
  3. Krymping: Metaller reduseres i størrelse fra smeltet tilstand til fast tilstand eller støpt tilstand. Dette tas i betraktning ved utformingen av en støpeform for å lage en del i riktig størrelse.
  4. Styrke og fleksibilitet: Stivhet og styrke er andre faktorer som bestemmer veggtykkelsen under byggingen, slik at konstruksjonen blir pålitelig.
  5. Motstand: motstandsdyktighet mot varme og kjemikalier for å fremme lang levetid under alle typer driftsforhold.
  6. Overflatebehandling: Støpematerialets egenskaper påvirker overflatefinishen og utseendet til den støpte delen, slik at den blir mer estetisk og glatt.
  7. Kostnader og miljøpåvirkning: Disse inkluderer materialets enhetskostnad, resirkuleringsevne og samsvar med bærekraftige standarder.

Følgende tabell beskriver derfor de passende områdene som det respektive materialet kan støtte; nedenfor er en tykkveggs sprøytestøpedel vi laget i PC-materiale, lær mer om Sprøytestøping av PC.

Sprøytestøping av tykke vegger

 

MaterialeTypisk utvalg av veggtykkelser:
ABS1,0-3,0 mm
Polykarbonat (PC)1,0-3,0 mm
Polypropylen (PP)0,8 - 2,5 mm
Polyetylen (PE)1,0-3,0 mm
Nylon (PA)1,0-3,0 mm
Acetal (POM)0,8-3,0 mm
Polyetylentereftalat (PET)1,0-3,0 mm
Polyvinylklorid (PVC)1,0-3,0 mm
Akryl (PMMA)1,0-3,0 mm
Polyetylenvinylacetat (EVA)1,0-3,0 mm
Termoplastiske elastomerer (TPE)1,0-3,0 mm
Epoksyharpiks1,0 - 5,0 mm
Silikon1,5 - 6,0 mm

Retningslinjer for dimensjonering av veggtykkelse i sprøytestøping

Her er en kort tabell som hjelper oss med å utforme en optimal veggtykkelse i sprøytestøping.

 

RetningslinjeBeskrivelse
Generelle tommelfingerregler● Oppretthold jevn tykkelse for å unngå defekter.

● Garantere jevne og tykke overganger.

Minimum veggtykkelseDet avhenger av materialflyten; materialer med høy flyt kan være 0,5-1,5 mm tykke.

● Sørg for at minimumstykkelsen er av hensyn til styrken.

● La formen fylles helt ut.

Maksimal veggtykkelseTykkere vegger (>4 mm) øker kjøle- og syklustiden.

● Optimaliser for å redusere kostnader og vekt.

Tykkere vegger kan føre til synkeflekker og hulrom.

Strukturelle/funksjonelle kravTykkere vegger for deler med høy belastning.

Spesifikk tykkelse for termisk og elektrisk isolasjon

● Balanse tykkelse for fleksibilitet og styrke.

Design for produserbarhet● Sørg for designkompatibilitet og materialflyt.

● Inkluder 1-2 graders trekk for enkel utstøting.

● Forsterker tynne vegger uten å øke volumet.

Simulering og testingBruk CAE til å forutse og løse problemer.

Test prototyper for å validere designet.

Verktøy og ressurser for optimalisering av veggtykkelse

Her er noen verktøy og ressurser som kan hjelpe deg med å øke effektiviteten ved sprøytestøping av veggtykkelse.

Programvareverktøy for simulering

Den brukes effektivt i sprøytestøping for å bestemme en passende veggtykkelse. Den spiller en svært viktig rolle i fastsettelsen av veggtykkelsen. Disse verktøyene gir informasjon om hvordan materialet kommer til å bli transportert og hvordan det oppfører seg i sprøytestøpeprosessen. På den måten kan designerne forebygge eller løse noen av utfordringene som kan oppstå under selve støpeprosessen. Viktige fordeler og funksjoner er blant annet

  1. Flytanalyse: Den imiterer prosessen der det smeltede materialet kommer inn i formen. Deretter viser den de delene der materialet kanskje ikke flyter som det skal, eller der det dannes luftfeller.
  2. Kjøleanalyse: Bruker datamodellering for å forutse kjølemønstre slik at kjølingen skjer i en jevn hastighet. Det bidrar til å eliminere problemer som skjevhet og synkemerker.
  3. Stressanalyse: Kontroller spenningene i delen for å bekrefte tykkelsen på veggen. Den kontrollerer om den er optimal og om spenningsnivået er tilstrekkelig for den tiltenkte bruken, men ikke for høyt.
  4. Optimaliseringsalgoritmer: Foreslå endringer som bør gjøres i veggtykkelse og andre designegenskaper. Fordi det kan påvirke muligheten til å produsere delen og effektiviteten i driften.

Noen av de mest kjente simuleringsprogrammene for sprøytestøping er Auto Desk Mold Flow, Solid Work Plastics og Moldex3D. De hjelper alle designerne med å designe seksjoner for å optimalisere løsninger uten defekter.

2. Alternativer for prototyping

Det finnes flere mulige typer prototyping. Det betyr at designerne kan gjøre viktige fysiske og realformative justeringer i forhold til de simulerte modellene. I tillegg har disse alternativene som mål å produsere delen, så disse prototypemetodene inkluderer:

  • 3D-utskrift (additiv produksjon): Muliggjør utvikling av prototyper i høyere hastighet, samtidig som sideveggene kan ha ulik tykkelse. Den mest åpenbare fordelen er at det er billig å raskt teste ulike design. I tillegg kan det enten være form- eller funksjonsprototyper.
  • CNC-maskinering: Tilbyr kontemplative prototyper som har brukt produksjonsmaterialer slik at resultatet er nesten perfekt. Denne metoden gjør det mulig å identifisere den mekaniske delens egenskaper og hvordan den oppfører seg under faktiske driftsforhold.
  • Soft Tooling: Dette kjennetegnes ved at man bruker støpeformer med lav styrke og kort formingstid for å produsere få deler sammenlignet med trykkstøping. Denne tilnærmingen er derfor fordelaktig når det gjelder vurdering av støpeprosessen og identifisering av veggtykkelsen. Den bidrar også til standardisering av hele formtypen.

Hvilke faktorer påvirker veggtykkelsen ved sprøytestøping?

Flere faktorer kan påvirke veggtykkelsen ved sprøytestøping. La oss diskutere disse faktorene i detalj:

1. Materialegenskaper

Disse egenskapene kan omfatte:

  • Viskositet: Materialer med lav viskositet flyter lett i tynne seksjoner og gir mulighet for tynnere vegger. Mens materialer med høy viskositet kan trenge tykkere vegger for å kunne fylle hele formen,
  • Krymping: Materiale med høy krympeverdi kan trenge tykkere vegger. Slik kan de ta høyde for dimensjonsendringer under avkjøling.
  • Styrke og fleksibilitet: Mekaniske egenskaper, dvs. strekkfasthet og fleksibilitet, avgjør veggtykkelsen for optimal ytelse.

2. Krav til utforming

Følgende designkrav kan påvirke veggtykkelsen.

  • Funksjonelle krav: Alt avhenger av hvilken del du trenger å produsere. Hvis det er en strukturell del, må veggene være tykkere slik at de kan være stive. På den annen side vil kosmetikkdelen trenge tynnere vegger slik at de kan oppnå det beste utseendet.
  • Estetiske hensyn: Tynne vegger kan gi et smart utseende. På den annen side er de tykkere veggene sterke nok, og de kan unngå defekter, f.eks. synkemerker eller skjevheter.
  • Kompleksiteten i design: Komplekse geometrier kan kreve varierende veggtykkelse. På den måten kan de garantere at alle funksjoner blir formet riktig, og at delen enkelt kan tas ut av formen.

3. Produksjonskapasitet

  • Design og konstruksjon av støpeformer: Former med høy presisjon kan enkelt håndtere tynnere vegger, og enklere former trenger tykkere vegger for riktig fylling. På den måten kan de garantere kvaliteten på delene.
  • Innsprøytningstrykk og -hastighet: Maskiner med høy kapasitet kan oppnå tynnere vegger, og de leverer høyere trykk og hastighet.
  • Kjølehastigheter: Jevn avkjøling er svært viktig, ettersom tykkere vegger krever lengre avkjølingstid. Det har direkte innvirkning på syklustiden og produksjonseffektiviteten. De avanserte kjølesystemene bidrar derfor til å skape tynnere vegger og samtidig opprettholde kvaliteten.

Konklusjon

Kort oppsummert gir sprøytestøping av veggtykkelse høy kvalitet, velformede og kostnadseffektive deler. Det er derfor viktig å vurdere materialegenskapene og designkravene nøye for å hjelpe designerne med å opprettholde en balanse. Denne balansen vil øke delens ytelse og produserbarhet. I tillegg kan du bruke avansert simuleringsprogramvare og prototyping for å forbedre hele prosessen. Disse verktøyene vil også produsere design med minimale defekter. I tillegg vil fremskritt innen materialer, simuleringsteknologi, sanntidsovervåking og bærekraftig praksis gjøre forbedringer i sprøytestøping. Slik kan den optimalisere veggtykkelsen mer presist og effektivt.

sprøytestøping av store volumer

Ofte stilte spørsmål

Hvilke faktorer påvirker materialvalget ved sprøytestøping?

Materialtypen bestemmes ut fra egenskaper som strekkfasthet og elastisitet, elektronmikroskopi, varme- og kjemikalieresistens. I tillegg avhenger det også av materialets utseende og glatthet, kostnad og resirkuleringsevne.

Hva er noen av de vanligste feilene ved sprøytestøping, og hvordan kan de forebygges?

Noen av de hyppigste feilene er synkemerker, som oppstår på grunn av ulik avkjølingshastighet, skjevhet som følge av indre spenninger, og flash, som er en overdreven oppbygging av materiale ved sprøytestøping skillelinjer. Disse problemene kan normalt unngås ved å følge de beste designprosedyrene og regulere varmegrader, trykk og andre forhold som kan påvirke produktet.

Hvordan kan simuleringsprogramvare være til nytte i sprøytestøpeprosesser?

Datastøttet simulering gjør det mulig for designere og ingeniører å modellere og analysere formdesign, materialvalg og prosessfaktorer i et virtuelt miljø. Ved hjelp av denne programvaren kan man forutsi materialbevegelsesmønstre, kjølehastigheter og andre ting før de fysiske formene utformes for bruk. Dette bidrar til å oppgradere kvaliteten og produserbarheten til delen.

Hva er fordelene med å bruke tilsetningsstoffer eller fyllstoffer i sprøytestøpematerialer?

Tilsetningsstoffer og fyllstoffer kan forbedre materialenes karakteristiske egenskaper, inkludert styrke, stivhet, flammebestandighet og slagfasthet. Det kan også forbedre bearbeidbarheten og redusere materialkostnadene ved å tilsette et større volum av et annet og rimeligere materiale til harpiksen. Det er imidlertid viktig å sørge for kompatibilitet, lik spredning og minimal interferens med de andre komponentene.

Sprøytestøping av PLA

De siste årene har det vært en økende etterspørsel etter miljøvennlige og bærekraftige produkter. Som et resultat av dette har stadig flere produsenter begynt å bruke biobasert plast, som for eksempel polymelkesyre (PLA), som erstatning for konvensjonell petroleumsbasert plast. PLA er et biologisk nedbrytbart og komposterbart materiale som er laget av fornybare ressurser, som maisstivelse, sukkerrør eller kassava. Når det gjelder produksjon av komplekse deler i store volumer, er sprøytestøping den ideelle prosessen å vurdere. I dette blogginnlegget skal vi dykke ned i en verden av PLA-sprøytestøpingog utforske fordelene, utfordringene og beste praksis i denne fascinerende prosessen.

Hva er PLA-sprøytestøping?

Sprøytestøping er en mye brukt produksjonsprosess for å produsere deler ved å sprøyte smeltet materiale inn i en form. Formen avkjøles deretter, og den størknede delen fjernes fra formen. Sprøytestøping er en rask, effektiv og kostnadseffektiv metode for produksjon av deler i store volumer med trange toleranser og komplekse former.

PLA er en termoplastisk polymer som har flere fordeler sammenlignet med konvensjonell petroleumsbasert plast. Først og fremst er det et biobasert materiale, noe som gjør det til et mer bærekraftig alternativ for både forbrukere og produsenter.

I tillegg er det biologisk nedbrytbart og komposterbart, noe som reduserer miljøpåvirkningen. Det er dessuten et trygt og giftfritt materiale, noe som gjør det ideelt for matemballasje og medisinske applikasjoner. Til slutt har PLA et lavt smeltepunkt og en høy krystalliseringshastighet, noe som gjør det egnet for sprøytestøping.

PLA har imidlertid noen egenskaper som påvirker egnetheten for sprøytestøping. PLA har for eksempel lavere smeltetemperatur og høyere termisk stabilitet sammenlignet med petroleumsbasert plast.

Som et resultat er det mer utsatt for nedbrytning under prosessering og lagring. I tillegg er PLA mer hygroskopisk, noe som betyr at det absorberer fuktighet fra luften, noe som kan påvirke de mekaniske egenskapene og prosesseringsforholdene.

Kan PLA sprøytestøpes

Ja, PLA (polymelkesyre) kan sprøytestøpes. PLA er et termoplastisk materiale som kan smeltes og støpes i ulike former og størrelser ved hjelp av sprøytestøpeprosessen. Denne prosessen innebærer at PLA-pellets varmes opp til smeltet tilstand og sprøytes inn i en form under høyt trykk. Deretter avkjøles formen, og den størknede delen fjernes fra formen. PLA er et populært materiale for sprøytestøping på grunn av miljøvennligheten, den biologiske nedbrytbarheten og den lavere smeltetemperaturen sammenlignet med konvensjonell petroleumsbasert plast. Det er imidlertid noen utfordringer forbundet med sprøytestøping av PLA, for eksempel skjevhet og krymping, porøsitet og synkemerker samt nedbrytning og nedbrytningsprodukter, som må overvinnes for å oppnå høy kvalitet og konsistente resultater.

Prosessen med PLA-sprøytestøping

Prosessen med å PLA-sprøytestøping består av flere trinn, fra forbehandling av råmaterialet til etterbehandling av den ferdige delen. Her følger en trinnvis veiledning til prosessen med PLA-sprøytestøping av plast.

Forbehandling av PLA-pellets: Før sprøytestøpeprosessen kan begynne, må PLA-pelletsen forbehandles. Dette innebærer blant annet tørking av pelletsen til et spesifisert fuktighetsinnhold for å forhindre nedbrytning og forbedre prosesseringsforholdene. Tørketemperaturen og -tiden vil variere avhengig av hvilken type PLA som brukes og fuktighetsinnholdet.

Sprøytestøpemaskin og komponenter: Sprøytestøpemaskinen består av flere komponenter, blant annet beholder, fat, skrue, dyse og støpeform. I beholderen oppbevares PLA-pelletsen, mens det er i tønnen at oppvarmingen og smeltingen av materialet finner sted. Skruen er ansvarlig for å transportere det smeltede materialet til dysen, og dysen er ansvarlig for å sprøyte det smeltede materialet inn i formen.

PLA-sprøytestøping

PLA-sprøytestøping

Innstilling av maskinparametere: Maskinparametrene, som innsprøytningshastighet, trykk og temperatur, må stilles inn riktig for å sikre at den ferdige delen oppfyller de ønskede spesifikasjonene. Injeksjonshastigheten og trykket bestemmer strømningshastigheten og pakketrykket til det smeltede materialet, mens temperaturen bestemmer materialets viskositet og flyteevne.

Sprøytestøpingsprosessen: Sprøytestøpingsprosessen begynner med at PLA-pellets smeltes i fatet. Det smeltede materialet transporteres deretter til dysen og sprøytes inn i formen. Formen klemmes fast under trykk, og det smeltede materialet fyller hulrommene i formen.

Deretter avkjøles formen, og den størknede delen tas ut av formen. Avkjølingstiden avhenger av emnets størrelse og form, samt PLA-materialets egenskaper.

Avkjøling og avforming: Formen kjøles ned ved hjelp av en kombinasjon av vann og luftsirkulasjon for å sikre at delen stivner raskt og jevnt. Avkjølingstiden avhenger av emnets størrelse og form, samt formens utforming. Når delen har stivnet, åpnes formen, og delen tas ut av formen.

Etterbehandling og etterbehandling: Det siste trinnet i sprøytestøpeprosessen er etterbehandling og etterbehandling. Dette kan omfatte trimming av porten, fjerning av eventuelle overflater og sliping eller polering av overflaten på delen. Det siste trinnet er å inspisere delen for defekter og sikre at den oppfyller de ønskede spesifikasjonene.

Utfordringer ved sprøytestøping av PLA-plast

Mens PLA-sprøytestøping av plast Selv om det er mange fordeler med å bruke en slik metode, er det også en rekke utfordringer som må overvinnes for å oppnå konsistente resultater av høy kvalitet. Noen av de vanligste utfordringene er blant annet

Vridning og krymping: En av de største utfordringene i PLA-sprøytestøping av plast er vridning og krymping. Dette skyldes den lavere smeltetemperaturen og den høyere termiske stabiliteten til PLA sammenlignet med konvensjonell petroleumsbasert plast. For å minimere vridning og krymping er det viktig å bruke en riktig formdesign, med tilstrekkelige port- og kanalsystemer, og å kontrollere temperaturen og avkjølingshastigheten i formen.

Porøsitet og synkemerker: Porøsitet og synkemerker er vanlige defekter som oppstår når materialet ikke fyller formhulen jevnt, noe som resulterer i luftlommer og ujevnheter i overflaten. For å minimere porøsitet og synkemerker er det viktig å bruke et jomfruelig PLA-materiale av høy kvalitet og å justere injeksjonshastigheten og trykket deretter.

Nedbrytning og nedbrytningsprodukter: Nedbrytning og nedbrytningsprodukter kan oppstå når PLA utsettes for høye temperaturer, fuktighet og UV-stråling. For å forhindre nedbrytning og nedbrytningsprodukter er det viktig å oppbevare PLA-pellets på et tørt og kjølig sted, og å bruke riktige tørke- og prosesseringsforhold.

Lavt smeltepunkt og termisk stabilitet: Det lave smeltepunktet og den lave termiske stabiliteten til PLA kan gjøre det vanskelig å oppnå konsistente resultater, spesielt når man produserer deler med komplekse former og små toleranser. For å overvinne denne utfordringen er det viktig å bruke et jomfruelig PLA-materiale av høy kvalitet og å tilpasse prosessbetingelsene deretter.

Beste praksis for PLA-sprøytestøping

For å oppnå høy kvalitet og konsistente resultater i PLA-sprøytestøping er det viktig å følge beste praksis og ta hensyn til følgende faktorer:

Optimal tørking av PLA-pellets: For å sikre at PLA-pelletsen er fri for fuktighet og klar til bearbeiding, er det viktig å tørke pelletsen til et bestemt fuktighetsinnhold ved hjelp av en avfukter eller tørketrommel. Tørketemperatur og -tid avhenger av hvilken type PLA som brukes og fuktighetsinnholdet.

Riktig port- og kanaldesign: For å sikre at det smeltede materialet fyller formhulen jevnt og uten defekter, er det viktig å bruke en riktig port- og kanaldesign. Designet bør være optimalisert for emnets størrelse og form, samt materialegenskapene til PLA-materialet.

Kontrollert formtemperatur og avkjølingshastighet: For å minimere skjevhet og krymping og for å oppnå en jevn delekvalitet er det viktig å kontrollere formtemperaturen og avkjølingshastigheten. Formtemperaturen bør holdes på et jevnt nivå, og kjølehastigheten bør justeres tilsvarende for å sikre at delen størkner raskt og jevnt.

Valg av hensiktsmessige prosessbetingelser: For å oppnå best mulig resultat er det viktig å velge de riktige prosessbetingelsene, inkludert injeksjonshastighet, trykk og syklustid. Disse forholdene bør justeres ut fra emnets størrelse og form, samt PLA-materialets egenskaper.

Bruk av jomfruelig PLA-materiale av høy kvalitet: For å oppnå best mulig resultat og minimere defekter er det viktig å bruke jomfruelig PLA-materiale av høy kvalitet. Dette vil bidra til å redusere porøsitet og synkemerker, samt minimere nedbrytning og nedbrytningsprodukter.

Regelmessig vedlikehold og rengjøring av støpeformen: Regelmessig vedlikehold og rengjøring av støpeformen bidrar til å sikre at formen er i god stand og at delene produseres konsekvent. Dette omfatter rengjøring av støpeformen etter hver syklus, kontroll av eventuell slitasje eller skade, og reparasjon eller utskifting av slitte eller skadde deler etter behov.

Konklusjon

For å oppsummere, PLA-sprøytestøping er en allsidig og miljøvennlig prosess som gir mange fordeler, blant annet reduserte utslipp, lavere energiforbruk og bedre bærekraft. Det er imidlertid også flere utfordringer som må overvinnes for å oppnå høy kvalitet og konsistente resultater.

Ved å følge beste praksis og ta hensyn til faktorene som er diskutert ovenfor, er det mulig å oppnå høy kvalitet og konsistente resultater i PLA-sprøytestøping av plast.

Sincere Tech er en av de 10 beste tilpasset sprøytestøpeform & sprøytestøpefirmaer i Kinatilbyr vi PLA-sprøytestøping og annen plastinjeksjon støping service, hvis du er ute etter PLA sprøytestøping velkommen til å kontakte oss.

PPS-støping

PPS, også kjent som polyfenylensulfid, er høytemperatur plastmaterialer som brukes i mange bransjer, i henhold til sine proterier, PPS er spesielt brukt til å støpe komponenter som brukes i miljøet med høy varmetemperatur, det er mange andre lignende plastmaterialer som PPS som er høytemperaturmaterialer, gå til plastmateriale med høy temperatur siden for å få vite mer om lignende plastmaterialer.

I dette blogginnlegget skal vi se nærmere på hva PPS-sprøytestøping er, fordeler og ulemper med sprøytestøpte deler i PPS-plast, selve prosessen, hvilke materialer som er kompatible med PPS-sprøytestøping, tips for vellykket PPS-sprøytestøping og utfordringer og potensielle problemer som kan oppstå i løpet av prosessen.

Hva er PPS-materiale

Hva er PPS-sprøytestøping?

PPS (polyfenylensulfid) er en termoplastisk polymer som er kjent for sin høye varmebestandighet, kjemiske resistens og dimensjonsstabilitet. Det er et halvkrystallinsk materiale med utmerkede mekaniske egenskaper, og det forsterkes ofte med glassfiber for å øke styrken og stivheten.

PPS-materialet brukes ofte i applikasjoner som bildeler, elektriske komponenter og industriprodukter på grunn av dets høye ytelsesegenskaper. Det tåler høye temperaturer og sterke kjemikalier som syrer, baser og organiske løsemidler. Det har også gode elektriske isolasjonsegenskaper og er UV-bestandig.

PPS er et dyrere plastmateriale sammenlignet med andre plastmaterialer, noe som kan gjøre prosessen mer kostbar. I tillegg til dette. Du kan gå til Hva er PPS-plast? materialside for å få vite mer om PPS.

En kort historikk om PPS-plastmateriale:

PPS (polyfenylensulfid) har en spennende historie. Det ble først oppdaget av Friedel og Crafts i 1888. På slutten av 1940-tallet ble det bestemt at PPS kunne bli en teknisk polymer med salgbar betydning. Senere utviklet Phillips Petroleum (USA) en salgbar prosess for polymerisering av PPS, og var de første som lyktes med å etablere en produksjonsvirksomhet i 1973. Denne tidlige tolkningen av PPS hadde en relativt lav molekylvekt, og det ble utviklet prosesser for bruk i spesialbelegg. Ved å øke molekylvekten ved hjelp av termisk kryssbinding i nærvær av oksygen ble både prosessering og mekaniske egenskaper forbedret. Det ble også oppdaget at PPS var egnet for sprøytestøping og hadde utmerket varme- og kjemikalieresistens.

I produksjonen er det svært viktig å velge riktige materialer. Det kan virkelig påvirke hvor godt produktene presterer og hvor lenge de varer. Polyfenylensulfid (PPS) er en tøff termoplast som har blitt en favoritt for utfordrende bruksområder på grunn av sine fantastiske egenskaper. Vi skal se hvordan denne teknikken skaper førsteklasses PPS-plastdeler som oppfyller de strenge kravene i ulike bransjer.

Typer av PPS-plast: PPS-harpiks finnes i flere ulike former, hver og en laget for spesifikke bruksområder:

  • Lineær PPS: Denne har omtrent dobbelt så høy molekylvekt som vanlig PPS, noe som øker seigheten og slagfastheten.
  • Herdet PPS: Vanlig PPS blir varmet opp med luft. Denne herdingsprosessen strekker molekylkjedene og legger til noen forgreninger, noe som gjør den sterkere og mer herdeplastlignende.
  • Polysulfon, polyfenylensulfid (PSE): Denne typen har høyere molekylvekt enn vanlig PPS, slik at flere polymerkjeder kan forgrene seg. Dette forbedrer egenskaper som seighet og duktilitet.

Forståelse av PPS-støpte deler: En materialoversikt:

PPS-sprøytestøpedeler er en sterk polymer som er kjent for sin fantastiske termiske stabilitet og kjemiske motstand. Det slites ikke lett ut under tøffe forhold som høy varme og tøffe kjemikalier. Her er noen viktige funksjoner i PPS plastmateriale:

  • Stor termisk deformasjonstemperatur: Den tåler høye temperaturer over lang tid uten å miste form eller funksjon.
  • Fantastisk motstandsdyktighet mot kjemikalier: Rørene våre motstår de fleste syrer, baser og løsemidler som brukes i tøffe miljøer (som Locale-rør).
  • Mekanisk styrke: Den har høy strekkfasthet, bøyemodul og slagfasthet - noe som sikrer at delene forblir intakte under bruk!
  • Dimensjonell stabilitet: PPS holder formen godt under ulike forhold - perfekt for oppgaver som krever små toleranser.
  • Elektriske egenskaper: Den høye elektriske isolasjonen gjør den egnet for motordrevne og elektriske deler.
  • Flammehemmende egenskaper: Det er naturlig flammehemmende og oppfyller strenge sikkerhetsstandarder for bransjer som romfart og bilindustri.
  • Lav vannabsorpsjon: Med bare 0,02% absorpsjon fungerer dette utmerket for områder med behov for minimalt fuktopptak.

Kunsten å sprøytestøpe PPS:

Sprøytestøping er en fleksibel måte å lage deler på ved å sprøyte smeltet plast inn i en form for å skape komplekse former. Når du blander dette med de fantastiske egenskapene til PPS-materialet, får du PPS-sprøytestøpingskomponenter med topp ytelse som er bygget for å vare.

Viktige hensyn ved sprøytestøping av PPS:

Når vi støper med PPS-plast, må vi ta hensyn til:

  • Formdesign: Å designe støpeformer godt hjelper med flytdynamikk og delkvalitet - ting som kanalplassering og kjølekanaler betyr mye, PPS er høy varme og super tåre plastmateriale, formdesign og valg av hulromstål vil være veldig viktig for å holde lang levetid på formen.
  • Valg av materiale: Den riktige PPS-kvaliteten velges ut fra hva som trengs - se på varmebestandighet og mekaniske egenskaper for å gjøre et klokt valg.
  • Behandlingsparametere: Det er avgjørende å holde øye med faktorer som temperatur og injeksjonstrykk for å oppnå jevn kvalitet og bedre produksjonseffektivitet.
  • Støpemaskiner: For å unngå problemer under bearbeidingen er det nødvendig med maskiner med høy ytelse som er utviklet for PPS.
Sprøytestøping av PPSU

Sprøytestøping av PPSU

Bruksområder for presisjonssprøytestøping av PPS:

Presisjonssprøytestøping i PPS finner du i mange bransjer som krever høy ytelse:

Her er noen vanlige eksempler:

  • Biler: Det brukes i deler som motordeksler og kontakter på grunn av sin varme- og kjemikalieresistens.
  • Elektronikk: Nyttig i komponenter som kretskort og kabinetter der elektrisk isolasjon er viktig.
  • Luft- og romfart: Lette motordeler og strukturelle komponenter er avhengige av høy temperaturbestandighet.
  • Kjemisk prosessering: Takket være sin gode kjemiske holdbarhet brukes den i ventiler og pumper.
  • Medisinsk utstyr: Brukes i kirurgiske verktøy og implantater der sterilitet og biokompatibilitet er avgjørende.
  • Forbruksvarer: Tenk på elektriske apparater og sportsutstyr.
  • Industrielt utstyr: For eksempel pumper, ventiler, tannhjul og lagre.

Fordeler med presisjonssprøytestøping av PPS:

Det er mange fordeler med å bruke presisjonssprøytestøping i PPS - det er et smart valg for å lage plastdeler av høy kvalitet! La oss se nærmere på disse fordelene:

  1. Forbedret ytelse: PS-deler briljerer i tøffe omgivelser fordi de er supersterke!
  2. Holdbarhet og lang levetid: Disse komponentene tåler slitasje veldig godt - de kan vare veldig lenge!
  3. Presisjon og nøyaktighet: Takket være denne metoden får vi deler med utmerkede toleranser som oppfyller strenge kvalitetskontroller!
  4. Allsidighet: Du kan enkelt forme PPS til alle slags komplekse design!
  5. Kostnadseffektivitet: Det er ofte billigere enn å bruke andre materialer eller metoder, samtidig som det gir god ytelse!

Hensyn til støping:

Husk disse tingene når du støper:

  1. Formtemperaturen påvirker styrke og krystallinitet.
  2. Injeksjonshastigheten påvirker produktkvaliteten og syklustiden.
  3. God muggventilasjon forhindrer problemer som luftlommer.
  4. Vær oppmerksom på egenskaper ved delutformingen, for eksempel trekkvinkler!

Fordeler og ulemper med PPS-sprøytestøpeform:

Her er noen fordeler:

  • Høy varmebestandighet
  • God kjemisk resistens
  • Sterke mekaniske egenskaper
  • Stor dimensjonsstabilitet
  • Gode elektriske egenskaper
  • Flammehemmende
  • Hydrolytisk stabilitet
  • Produserer lite røyk
  • Trygg for kontakt med matvarer

Nå til ulempene:

  • Dyrere enn noen andre plastmaterialer
  • Kan være vanskelig å behandle
  • Færre fargevalg

Ved å ha disse punktene i bakhodet kan produsenter ta smarte valg om bruk av PPS-sprøytestøping for å få produkter som fungerer utmerket og varer lenge!

Konklusjon

Kort oppsummert bidrar presisjonssprøytestøping av PPS til å lage plastdeler med høy ytelse som passer til tøffe industrikrav! Ved hjelp av PPS' unike styrker og presise teknikker kan man bygge komponenter som utmerker seg med termisk stabilitet, kjemisk motstand, holdbarhet og styrke.

Når bedrifter prøver å møte nye markedsbehov raskt, vil presisjonssprøytestøping av PPS være avgjørende for å kunne levere produkter av topp kvalitet! Ved å utnytte det som gjør PPS fantastisk sammen med dyktige teknikker for sprøytestøping, kan bedrifter øke produktytelsen og samtidig oppnå fordeler i dagens raskt skiftende marked.

5 vanlige spørsmål om PPS-sprøytestøping:

1. Kan PPS sprøytestøpedeler males?

Ja, PPS-støpte deler kan males eller teppebelegges. Likevel er riktig overflatebehandling avgjørende for å sikre vedheft og kontinuitet.

Deretter er noen vanlige stiler for olje eller belegg PPS sprøytestøping deler:

Kjemisk etsing: Denne prosessen skaper en ru overflate på PPS, noe som gir bedre mekanisk feste for belegg.

Honningbehandling: Ved å påføre honning på PPS-overflaten kan det dannes en mikroporøs underpasta som forbedrer vedheftingen.

Korona-utladning: Dette systemet bruker elektrisk utladning for å modifisere overflatepakkene av PPS, noe som forbedrer beleggets vedheft.

Rørbehandling: analogt med nimbusutladning, kan rørbehandling forbedre overflatenergien og fremme beleggets vedheft.

2. hva bør man se på når man designer støpeform for PPS plastsprøytestøpemateriale?

Viktige punkter inkluderer:

  1. Plasseringen av portene har stor betydning for kvaliteten.
  2. Effektive kjølekanaler bidrar til å forme produktene riktig.
  3. God utlufting hindrer at det oppstår defekter.
  4. Støpematerialene må passe til applikasjonens behov.

3. Hvilke utfordringer kan PSE-sprøytestøping medføre?

Noen utfordringer kan være: - Vanskeligere materialbehandling på grunn av høyere temperaturer, kan kreve spesialmaskiner. Kostnadene kan være høyere i starten, men det er ofte verdt det senere.

4. Hvordan bidrar PSE-sprøytestøping til bærekraft?

Det hjelper ved å:

- Mindre avfall siden disse delene varer lenger - de må byttes ut sjeldnere!

- Forbedrer energieffektiviteten ved å håndtere høye temperaturer uten behov for tonnevis av oppvarming/kjøling!

- Støtt resirkuleringstiltak som reduserer behovet for nye ressurser!

Presisjonssprøytestøping av plast

5. Hvordan kan PPS brukes i additiv produksjon?

PPS i additiv produksjon: PPS er et lovende materiale for kumulativ produksjon (AM) på grunn av sin utmerkede varmebestandighet, kjemiske motstand og mekaniske pakker. Selv om det byr på noen utfordringer på grunn av det høye smeltepunktet og varmeledningsevnen, kan flere AM-måter brukes til å gjenbruke PPS Ray Greasepaint Bed Fusion (LPBF) En av de vanligste måtene å resirkulere PPS på er LPBF. I denne prosessen smelter og smelter en stråle sammen pulverisert PPS, delkomponent for delkomponent, for å produsere den ønskede delen. LPBF muliggjør komplekse former og korridorer av høy kvalitet.

Fused Filament Fabrication (FFF): FFF, også kjent som 3D-printing, kan brukes til å gjenbruke PPS-fibre. På grunn av PPS' høye smeltepunkt er det likevel behov for spesialiserte snotter og oppvarmede kamre. FFF er egnet for prototyping og småskalaprodukter av PPS-korridoren.

Materialekstrudering og additiv produksjon (MEAM)): MEAM er analogt med FFF, men bruker større periferifibre eller kuler. Denne måten kan brukes til å produsere større PPS-korridorer med bedre dimensjonal finesse.

 Stereolitografi (SLA): SLA innebærer at man projiserer en stråle inn i et flytende harpiksbad og herder PPS-materialet del for del. Selv om PPS ikke er et vanlig materiale for SLA på grunn av det høye smeltepunktet, kan enkelte tekniske harpikser og etterbehandlingsmetoder brukes.

Utfordringer og betraktninger:

Etterbehandling: AM-produsert PPS-korridor kan bære etterbehandlingsmåte som gløding eller maskinering for å oppnå forespurte pakker og utholdenhet. Til tross for disse utfordringene tilbyr PPS betydelige muligheter for kumulativ produksjon. Dens høyytelsespakker gjør den egnet for operasjoner innen romfart, bilindustri og annen flid som tar holdbare og varmebestandige faktorer.

Vi har jobbet med mange typer PPS sprøytestøpte deler PPSU sprøytestøping, Sprøytestøping av PEEK og andre typer plastmaterialer, hvis du har et prosjekt som trenger PPS sprøytestøpte produkter, velkommen til å kontakte oss, vi vil sitere deg den beste prisen.

Elektronisk sprøytestøpt del

Hva er elektronikk for sprøytestøping

Sprøytestøping av elektronikk er elektroniske plastkomponenter produsert ved produksjonsprosessen for sprøytestøping. Det er mange elektroniske enheter som bruker sprøytestøping av elektronikkmetode, de inkluderer kontrollromotorer, signallys, routoer og mange flere.

Den globale sprøytestøpeindustrien forventes å øke med en samlet vekstrate på 4,8 prosent fra 2023 til 2030. Elektronikkindustrien er den største forbrukeren av denne industrien. Hver eneste enhet, fra smarttelefoner til bærbare datamaskiner, har en sprøytestøpt plastdel. Mange viktige elektroniske komponenter lages ved hjelp av ulike sprøytestøpingsteknikker. Disse kan være innsatsstøping, miniatyrstøping og overstøping. Vi vil belyse fordelene og komplette prosedyrer i elektronikksprøytestøpeindustrien.

Elektronisk sprøytestøping

 

Materialer som brukes i sprøytestøping av elektronikkindustrien

Produksjonen av ulike typer elektronikk er en komplisert prosess. Vi bruker forskjellige plastdeler i elektronikk. Plastmaterialer tåler tøffe forhold. De tåler høye temperaturer og forringes ikke så lett. La oss snakke om forskjellige plastmaterialer som brukes i sprøytestøpt strukturell elektronikk. Noen av dem er:

1.    Polykarbonat

Polykarbonat er en seig og sterk termoplast. Det øker levetiden til elektroniske enheter. Det tåler høye temperaturer. Derfor er det et stabilt materiale. Det er et godt alternativ til metallkomponenter. Det brukes mest i elektroniske brytere og CD-plater (CD-er). gå til Sprøytestøping av polykarbonat for å få vite mer.

2.    Polyamid

Polyamid er også kjent som nylon. Det tåler temperaturer opp til 250 °C. Det er altså varmestabilt. Dessuten er det kjemisk motstandsdyktig. Det tåler å bli utsatt for korrosive stoffer, oljer og løsemidler. Det er en isolator. Denne egenskapen gjør det utmerket til bruk i elektronikk. Det brukes mest i adaptere, stikkontakter og kabler.

3.    Polypropylen

Polypropylen er den nest mest produserte plasten etter polyetylen. Den har gode isolasjonsegenskaper, akkurat som polyamid. Den har et høyt smeltepunkt. Som et resultat opprettholder den termisk stabilitet. Det brukes hovedsakelig i medisinsk utstyr. Det kan imidlertid også brukes i kontakter, stikkontakter og batterikomponenter. Gå til PP-sprøytestøping for å få vite mer.

4.    Polyetylen med høy tetthet

Som navnet indikerer, har det høyere tetthet enn andre polyamider. Det har et smeltepunkt på 260 °C. Det egner seg derfor til bruk ved høye temperaturer. Dessuten har det høy mekanisk styrke. Det egner seg derfor til strukturelle komponenter. Det har lav fuktabsorpsjon. Derfor forhindrer det korrosjon. Det brukes mest i trådbelegg og trådisolasjon.

5.    Akrylnitril-butadien-styren

ABS har middels styrke. Det tåler ikke UV-stråling. Så det anbefales ikke for utendørs enheter. Det er et budsjettvennlig alternativ. Det kan også steriliseres gjennom gammastråling. Det brukes til enheter som datamaskinkasser, telefonhåndsett og skjermer.

6.    Termoplastisk uretan

Det er et fleksibelt materiale. Det tåler spenninger og vibrasjoner. Det er svært motstandsdyktig mot oljer og fett. I tillegg er det en ripebestandig polymer. Det har også limingsegenskaper. Det kan lett feste seg til substrater som metall og glass. Det er mye brukt i skosektoren. Det brukes i produksjonen av skodeler. Det er imidlertid også egnet for fleksible kretskort og fleksible flatkabler.

Komplett trinn-for-trinn-prosess for sprøytestøpt strukturell elektronikk

Behovet for mini-elektronikk øker i takt med den teknologiske utviklingen. Derfor kan moderne metoder brukes som erstatning for gamle teknikker. Så la oss diskutere en avansert teknikk for å lage sprøytestøpt elektronikk.

1.    Lag et design

Det første trinnet er å lage et design. Vi definerer enhetens form, størrelse og funksjoner. I tillegg tar vi hensyn til de elektriske og termiske kravene. Deretter optimaliserer vi designet for å oppnå bedre ytelse. Vi kan bruke CAD-programvare til å lage et design

2.    Lag en form

Etter at du har laget designet av ønsket enhet, lager du en støpeform. Den skal ha funksjoner og former i henhold til vår produktdesign. Sørg for at formen tåler høye temperaturer og trykk. Vi kan bruke CNC-maskinering eller 3D-utskrift for å lage en form.

3.    Injisering av materialet

Neste trinn er å sette plastmaterialet inn i sprøytestøpemaskinen. Vi skal varme opp plasten. Så vil den smelte. Nå kan vi injisere den i formen. Vi vil bruke høyt trykk for å fylle formen jevnt.

4.    Størkning og nedkjøling

Formen inneholder spesifikke kjølekanaler. Plasten kommer i kontakt med formen. Som et resultat fjerner konveksjon mesteparten av varmen. Noe varme går tapt på grunn av varmebølger som stråler ut. Når plasten avkjøles, kommer molekylene tettere sammen. Som et resultat av dette skjer det en størkning. Plasten krymper når den stivner. Deretter åpnes formen. Dermed kastes plasten ut.

5.    Metallisering

Deretter kommer metalliseringen. Det betyr å påføre et tynt lag med ledende materiale på en isolator. Vi må sørge for at det ledende materialet påføres jevnt på plastoverflaten. Det ledende materialet kan være sølv eller kobber. Deretter tilsetter vi en kjemisk aktivator for å forsterke limingsprosessen.

6.    Tillegg av elektroniske komponenter

Etter metallisering vil vi legge til elektroniske komponenter på overflaten. Vi kan plassere kondensatorer og motstander på den metalliserte strukturen. Vi kan bruke overflatemonteringsteknologi eller gjennomgående hullteknologi for å plassere elektroniske komponenter.

7.    Tilsetning av beskyttende materiale

Nå produseres den sprøytestøpte strukturelektronikken. Det siste trinnet er å belegge de elektroniske komponentene med et beskyttende lag. Det beskytter de elektroniske komponentene mot miljøpåkjenninger. Det forhindrer også kjemisk korrosjon og skader.

Sprøytestøping av elektronikk

Fordeler med sprøytestøping av elektronikk

Du er godt klar over den komplette prosessen med elektronisk sprøytestøping. Så la oss snakke om fordelene med sprøytestøpt elektronikk

1.    Budsjettvennlig

Prosessen kan produsere et høyt volum av elektroniske produkter til en overkommelig pris. Vi bruker plastdeler i elektronikk som et alternativ til andre materialer. Vi kan for eksempel bruke ståldeler i stedet for plast. Men stål er veldig dyrt. Så å bruke plastprodukter er en kostnadseffektiv strategi. I motsetning til stål eller metall krever dessuten sprøytestøpeprosessen for plast mindre energi.

2.    Isolasjon

Elektriske apparater er utsatt for overoppheting i fabrikker, kontorer og hjem. Ifølge en rapport har det blitt rapportert 183 branntilfeller i Canada de siste årene. Disse skyldes overoppheting av mobiltelefoner og annen elektronikk. Plast er en dårlig leder av elektrisitet. Det forhindrer derfor overoppheting av elektroniske enheter. Som et resultat kan det redusere brannhendelser på grunn av elektroniske enheter

3.    Lang levetid

Metall kan eroderes. Alle andre materialer er utsatt for korrosjon. Men hvis vi velger en kjemikaliebestandig plast, vil den forhindre korrosjon. Plastens termostabile egenskaper gjør at den kan fungere under tøffe værforhold. Dermed øker levetiden til den sprøytestøpte elektronikken.

4.    Lette produkter

Plast er et lett materiale. Bruk av plastmaterialer i elektroniske enheter gjør dem bærbare. I tillegg er plast et materiale som er lett å rengjøre. Vi kan derfor enkelt fjerne smuss fra det.

5.    Rask produksjon

Å produsere plast er ikke en tidkrevende prosess. Syklustiden varierer fra 2 sekunder til fem minutter. Vi kan derfor produsere et stort antall sprøytestøpt elektronikk på kort tid.

Ulemper med sprøytestøping av elektronikk

Sprøytestøping har mange fordeler når det gjelder å lage elektroniske kabinetter. Det har også noen begrensninger. La oss diskutere disse her.

1. Høye startkostnader

Sprøytestøping kan kreve betydelige startkostnader på grunn av design og produksjon av formene. Disse komplekse formene kan derfor være svært kostbare og egner seg bare for store produksjonsvolumer. I tillegg må formene designes på nytt hvis det er behov for å endre designet, noe som øker kostnadene og er svært tidkrevende.

2. Ledetid

Det tar relativt lang tid å lage formene som skal brukes til sprøytestøping, og det kan derfor ta lengre tid før produksjonen kommer i gang. Dette er fordi prosessen tar tid i denne typen design, fra unnfangelsen av ideen til det tidspunktet den blir implementert. Tross alt går det gjennom forskjellige stadier av prototyping for å kunne oppnå ønsket resultat.

3. Materielle begrensninger

Materialene som kan brukes i sprøytestøping, er underlagt visse begrensninger. I utgangspunktet må materialet som velges for bruk i bussen, ha visse termiske, elektriske og mekaniske egenskaper for å passe til de elektroniske komponentene som etterspørres. Dessuten er det verdt å nevne at noen sprøytestøpematerialer kan være vanskelige å resirkulere, noe som utgjør et miljøproblem.

4. Kompleksitet i formdesign

Sprøytestøping innebærer strenge toleranser i produksjonsprosessen for å fremstille varer som passer så godt som mulig til den tiltenkte designen, en prosess som er komplisert og krever høy kompetanse. De valgte emnedesignene har noen begrensninger når det gjelder tillatte geometrier for å unngå problemer som underskjæringer og noen begrensninger på utkastvinkler, noe som betyr at designfriheten og kreativiteten kan være problematisk i visse tilfeller.

5. Produksjonsproblemer

Ved sprøytestøping kan man observere visse standardfeil som kan være synlige på kabinettene; disse inkluderer skjevhet, synkemerker, strømningslinjer osv. Sprøytestøping som produksjonsteknikk kan imidlertid være ganske effektiv når det gjelder syklustiden, det vil si tiden det tar å produsere en enkelt del. Samtidig er det en ganske komplisert oppgave å minimere syklustiden og garantere kvaliteten på de produserte delene.

6. Materialavfall

Materialsvinn er også et problem fordi en stor del av materialet som brukes i støpeformens hulrom og utløpere, ikke kan brukes med mindre skrapmaterialet slipes opp og brukes på nytt, noe som ikke alltid er mulig når det brukes materialer med høy ytelse. Dessuten kan overdreven design, for eksempel krumninger, kreve mer materiale, noe som betyr mer avfall.

Elektronisk støpedel

Utfordringer ved sprøytestøping av elektronikkabinetter

Her er noen av utfordringene knyttet til sprøytestøping av elektronikk;

  1. Materialkompatibilitet: En av de største utfordringene er å sikre materialkompatibilitet. Plastmaterialet må være kompatibelt med de elektroniske komponentene. Det vil forhindre skader og korrosjon. Å velge riktig materiale er en komplisert prosess. Sørg derfor for å velge et materiale som oppfyller de elektriske og termiske kravene til elektroniske enheter.
  2. Termisk styring: Varmestyring er en annen utfordring. Sprøytestøpeprosessen genererer varme. Denne varmen kan skade elektriske komponenter. Derfor kan ventilasjonskanaler bidra til å håndtere varmen.
  3. Design og produksjon av støpeformer: Det er forbundet med høye kostnader å lage komplekse støpeformer. I tillegg er det også vanskelig å opprettholde de stramme toleransene som er avgjørende for at delene skal passe riktig sammen og fungere som de skal. I tillegg er effektive kjølekanaler også viktig for å redusere syklustiden og unngå skjevheter.
  4. Kvalitetskontroll: Det er også svært vanskelig å sikre at delene beholder dimensjonene sine og ikke krymper eller vrir seg etter avkjøling. I tillegg er overflatebehandlingen, dvs. glatt og strukturert, også svært utfordrende. Det kan også føre til problemer som synkemerker, hulrom eller sveiselinjer.
  5. Produksjonsprosessen: Når vi prøver å finne balansen mellom Hvis man kombinerer syklustid og kvalitet, kan det øke effektiviteten, men føre til feil. Det blir derfor en utfordring å opprettholde en jevn kvalitet på delene i store produksjonsserier. I tillegg krever det strenge prosesskontroller. Dessuten er det ganske vanskelig å styre materialflyten i støpeformen, slik at man kan unngå problemer som flytlinjer eller ufullstendig fylling.

Konklusjon

Konklusjonen er at sprøytestøping av elektronikk blir stadig mer populært. Den genererer verdifulle små elektriske komponenter. Ulike materialer brukes i sprøytestøping av elektronikk. Polykarbonat, nylon og polypropylen er blant de mest brukte materialene. Hele prosessen er delt inn i mange trinn. Den elektroniske enheten har en plastkomponent innebygd i den. Det har mange fordeler. Det gjør elektroniske dingser lettere, mer isolerte og varer lenger. Utfordringene knyttet til den elektroniske prosessen med sprøytestøping inkluderer termisk stabilitet og materialkompatibilitet.

Ofte stilte spørsmål

Q1. Kan vi produsere elektronikk ved hjelp av en sprøytestøpeform?

Ja, vi kan produsere ulike typer elektronikk ved hjelp av sprøytestøpingsteknikker. Noen av de mest brukte er sensorer, antenner, kretskort og kontakter.

Q2. Hvilken type elektroniske komponenter kan produseres ved hjelp av en sprøytestøpeform?

Normalt kan alle typer elektroniske hus og komponenter bruke sprøytestøpeprosess, hvis du ikke er sikker, velkommen til å sende oss, vi er en av topp 10 bedrifter som driver med sprøytestøping av plast i KinaVi går gjennom den og gir deg et konkurransedyktig pristilbud.

Q3. Hvordan skiller elektronisk sprøytestøping seg fra tradisjonell sprøytestøping?

Begge er sprøytestøping prosess, bare forskjellig for det endelige formålet med å bruke, hvis du har spørsmål, er du velkommen til å kontakte oss.

Q4. Kan elektronisk sprøytestøping brukes til å produsere medisinsk utstyr?

Ja, det kan produsere medisinsk utstyr fordi det er mange spesielle enheter som er laget av sprøytestøpeprosessen. Det danner for det meste implanterbare enheter og diagnostisk utstyr.

Q5. Hva er den typiske holdbarheten for sprøytestøpt elektronikk?

Den typiske holdbarheten for sprøytestøpt elektronikk varierer fra 3-5 år. Det avhenger også av materialene som brukes i det ønskede produktet.

Fremtiden for formfremstilling og plast

Mold Making and Plastics er sprøytestøpingsprosessen som er en forenklet og effektiv produksjonsprosess som innebærer å injisere oppvarmet materiale i en plast sprøytestøpeform for å forme plast eller gummi.

I dag brukes sprøytestøping av plast i flere bransjer, blant annet innen romfart, emballasje og sprøytestøping av leker. Sprøytestøping og plastindustrien er i stadig utvikling på grunn av teknologiske gjennombrudd, markedsforstyrrelser og visse økonomiske og sosiale faktorer.

Betydelige gjennombrudd

Verktøyforming, sliping, varmebehandling, metallbearbeiding og utboring av designet ble utført for hånd, noe som krevde enormt mye tid. Siden nesten hele prosessen ble utført manuelt, var det uunngåelig at det oppstod problemer med samsvar, ettersom ingen av formene hadde like egenskaper.

I takt med den teknologiske utviklingen bidro imidlertid to teknikker for formfremstilling i stor grad til overgangen fra manuell til dataassistert maskinering

CNC-fresemaskiner

Disse maskinene tok først form av 2D Bridgeport-fresemaskiner, som ble integrert med CNC-utstyr. Disse maskinene tok markedet med storm og forandret måten verktøymakere skapte deler på, siden de tilbød raske prosesseringshastigheter kombinert med større nøyaktighet og minimalt med manuelt tilsyn.

Moderne CNC-fresemaskiner gir rask bearbeidingshastighet og høy nøyaktighet, selv når man arbeider med komplekse former.

kostnader for sprøytestøping

CAD-programmer

CAD-programmer har hatt en avgjørende innvirkning på utviklingen av støpeformindustrien ved å effektivisere prosessen med å designe støpeformer. Disse programmene gjorde det mulig for fagfolk i bransjen å lage 2D- og senere 3D-gjengivelser, som raskt og enkelt kunne redigeres, testes og endres.

Fremtidens omfang av sprøytestøping og plast

Sprøytestøpeindustrien har fortsatt å blomstre i årenes løp og har vist et enormt potensial for effektivitetsforbedringer, for eksempel når det gjelder å lage støpeformer direkte til metall i et raskere tempo og samtidig holde seg innenfor budsjettet.

Her er noen viktige bransjetrender som potensielt kan definere utviklingen av plastform og plastproduksjon, sprøytestøping og plast i årene som kommer - og

Komposittmaterialer

Siden 2020 har komposittmaterialer fått momentum som en av de mest ledende trender i romfarts- og bilindustrien. Et komposittmateriale er en heterogen blanding av to eller flere materialer som brukes for å oppnå et sterkere sluttprodukt. 

Kompositter er betydelig sterkere til tross for at de er lettere enn høyytelsesmaterialer som stål. Disse egenskapene gjør dem til et ideelt valg for fly-, bil- og byggebransjen.

Kompositter er fleksible, slitesterke og kostnadseffektive erstatninger for materialene som brukes til sprøytestøping og støpeformer. I de kommende årene vil komposittmaterialer gjøre sitt inntog i den medisinske sektoren og i produksjon av militært utstyr.

Økt automatisering

Implementering av automatisering og programvare, avansert analyse og maskinlæring i produksjonsprosesser øker raskt i takt med de siste teknologiske gjennombruddene. Programmeringen har blitt betydelig enklere, noe som har ført til minimert nedetid, raskere produksjonssykluser og effektivt vedlikehold.

Automatisering gjør det mulig for produsenter og ingeniører å utøve en høyere grad av kontroll over sprøytestøpeprosessen. Det kan også hjelpe designere og produktutviklere med å opprettholde et konkurransefortrinn i markedet.

En form for automatisering som kalles analyse av formflyt er i ferd med å vinne innpass i produksjonssektoren. Ved hjelp av programvare simuleres sprøytestøpingssyklusen, og man får innsikt i prosessen med å fylle støpeformen. Denne simuleringen er spesielt effektiv når man gjør endringer i produktdesignet i designfasen. Mold flow-analyse kan også teste for skjevhet, krymping, feilaktige fyllmønstre og mer før prototyping.

Hvis du driver en liten bedrift og har et stramt budsjett, bør du investere i en vertikal mølle ettersom det er relativt kostnadseffektivt og gir god nøyaktighet.

Bærekraftig utvikling

Produksjonsindustrien er i ferd med å gå i retning av bærekraft, og følgelig må også plastindustrien ta et skritt i denne retningen. Miljøbevisste innkjøpere har blitt stadig flere, noe som har inspirert produksjonsbedriftene til å effektivisere driften og redusere svinnet betraktelig.

Formverktøyindustrien har utviklet måter å operere på sprøytestøping maskiner med større effektivitet for å redusere strømforbruket, bytte til bærekraftige strømkilder, bruke resirkulerte råvarer, minimere materialsvinn og mye mer.

Selv om bærekraft er på rask fremmarsj, må produksjonsbedrifter oppfylle kritiske prosjektspesifikasjoner for å sikre optimale kvalitetsparametere. Dette skyldes at resirkulerte produkter ofte ikke tilfredsstiller de fysiske og mekaniske spesifikasjonene for den endelige varen.

Bioplast

Bioplast er et direkte resultat av bærekraftig utvikling, og flere produsenter har begynt å utforske fordelene og implementeringen av bioplast i sprøytestøping og støpeformer.

Bioplast er petroleumsbaserte plastsubstitutter som utvinnes fra biomasser som sukkerrør, mais, tang og tare og andre. Bioplast er unik fordi den er biologisk nedbrytbar og karbonnøytral.

Produksjon og emballering av produkter ved hjelp av bioplast kan bidra til at støperiene blir mer miljøvennlige og minimerer de negative miljøkonsekvensene.

Det er imidlertid viktig å merke seg at bioplast ikke er helt forurensningsfri. Bioplast blandes ofte med ikke-resirkulerbare polymerer for å forbedre styrken. Hvis denne hybride bioplasten havner på en vanlig søppelfylling, kan det ta rundt 100 år før den brytes ned, noe som kan være giftig for miljøet.

PA6-sprøytestøpeverksted

Lette alternativer 

Produsenter og forbrukere er på utkikk etter produkter med lav vekt. I luftfarts- og bilindustrien fører lettere komponenter til lengre kjørelengde under hele reisen og effektivt forbruk av ladning i batteriene.

Når det gjelder produksjon av medisinsk utstyr, kan stenter og leddproteser som er laget av lettvektsmaterialer, øke pasientens restitusjon betraktelig. Lette materialer koster også mindre under transport.

Siste ord

De ovennevnte trendene kan hjelpe ingeniører og produsenter med å oppnå bedre resultater ved å minimere omfanget av feil og tidsforbruk. I tillegg til de to gjennombruddene, nemlig CNC-fresemaskinene og CAD-programmene, har det skjedd en betydelig utvikling innen plaststøping sektoren med den nyeste teknologien.

Noen lovende fremtidstrender inkluderer lettvektsmaterialer, automatisering og en forpliktelse til bærekraftig produksjon, noe som vil gi støpeformindustrien et løft.

Om forfatteren:

Peter Jacobs er Senior Director of Marketing i CNC Masters. Han er aktivt involvert i produksjonsprosesser og bidrar jevnlig med sin innsikt i ulike blogger om CNC-maskinering, 3D-printing, hurtigverktøy, sprøytestøping, metallstøping og produksjon generelt.

Hvis du er på utkikk etter leverandører av støpeformer for å lage ditt plastinjeksjonsstøpeprosjekt, velkommen til å kontakte oss. Vi er en av de 10 beste bedrifter som driver med sprøytestøping av plast i Kina som tilbyr tilpassede plastsprøytestøpeformer og støpegods, støpegods, CNC-maskinering, deledesign, testing, prototyping, montering og levering, alt i en tjeneste her.

Sprøytestøpeform

I moderne industriproduksjon, mugg er en viktig teknologi som brukes til å forme produkter (inkludert metallprodukter og ikke-metallprodukter) for alle bransjer. I mellomtiden er det "forstørrelsesglasset for effektivitet og fortjeneste" til råmaterialet og utstyret, fordi verdien av sluttproduktet som er laget i formen ofte er titalls, til og med hundrevis av ganger så verdifull som selve formen.

Støpeformindustrien er den grunnleggende industrien i den nasjonale økonomien, og den kalles "industriens mor". Alle aspekter av menneskelivet som klær, mat, bolig og transport er nært knyttet til støpeformindustrien. Derfor har nivået på sprøytestøpteknologi vært et viktig symbol for å måle et lands utviklingsnivå for mekanisk industri.

Og mugg kan deles inn i to typer av dem: mugg for metallprodukter og ikke-metallprodukter.
Metallproduktformen inkluderer kaldpressform, pressform, smieform, pressstøpeform, presis støpeform, stemplingsverktøy, stanseverktøy og støvmetallurgiform, etc. Disse typer mugg har omfattende anvendelse i elektrode-kraniale produkter, biler, luftfartsinstrumenter og andre metallprodukter.
De ikke-metalliske produktene inkluderer plastinjeksjonsform, keramisk form, gummiform, glassform, matform og ornamentform. Disse typer former har omfattende anvendelse i våre liv, på denne siden snakker vi om sprøytestøpeform. dette er den mest papulære moderne teknologien som brukes i livet vårt overalt.

En sprøytestøpeform som brukes til å forme et plastprodukt ved hjelp av sprøytestøpingsprosessen. En standard sprøytestøpeform består av en stasjonær eller injeksjonsside som inneholder ett eller flere hulrom, og en bevegelig eller utstøtningsside.

Harpiksen, eller råmaterialet for sprøytestøpingPlasten er vanligvis i pelletsform og smeltes av varme og skjærekrefter like før den sprøytes inn i formen. Kanalene som plasten strømmer gjennom mot kammeret, vil også stivne og danne en fast ramme. Denne rammen består av gransom er hovedkanalen fra reservoaret med smeltet harpiks, parallell med dysens retning, og løperesom er vinkelrett på dysens retning, og som brukes til å transportere smeltet harpiks til port(er)eller punkt(er) på porten og mating av det smeltede materialet inn i formhulen. Gran- og løpesystemet kan kuttes av og resirkuleres etter støping. Noen støpeformer er konstruert slik at den automatisk fjernes fra delen ved hjelp av støpeformen. For eksempel ubåtporten eller bananporten, hvis du bruker varmkanalsystemer, vil det ikke være noen løpere.

Kvaliteten på sprøytestøpt del avhenger av kvaliteten på støpeformen, hvor nøye man er under støpeprosessen, og av detaljene i utformingen av selve delen. Det er viktig at den smeltede harpiksen har akkurat riktig trykk og temperatur, slik at den flyter lett til alle deler av formen. Delene av sprøytestøpeform må også settes sammen ekstremt presist, ellers kan det oppstå små lekkasjer av smeltet plast, et fenomen som kalles blink. Når en tekniker fyller en ny eller ukjent form for første gang, og skuddstørrelsen for den aktuelle formen er ukjent, bør teknikeren redusere dysetrykket slik at formen fylles, men ikke blinker. Deretter kan trykket økes med det nå kjente sprøytevolumet uten å være redd for å skade formen. Noen ganger kan også faktorer som utlufting, temperatur og harpiksens fuktighetsinnhold påvirke dannelsen av flash.

Materiale for sprøytestøpeform

Tradisjonelt, støpeformer har vært svært dyre å produsere, og derfor ble de vanligvis bare brukt i masseproduksjon der tusenvis av deler blir produsert. Sprøytestøpeformer er vanligvis konstruert av herdet stål eller aluminium. Valget av materiale for å bygge en form er først og fremst et spørsmål om økonomi. Stålformer koster generelt mer å konstruere, men den lengre levetiden veier opp for den høyere startkostnaden over et større antall deler som lages i formen før den slites ut. Aluminiumsformer kan koste betydelig mindre, og når de designes og bearbeides med moderne datastyrt utstyr, kan det være økonomisk å støpe hundrevis eller til og med titalls deler.

Krav til sprøytestøpeformen

utstøtingssystem

Et utskytingssystem er nødvendig for å skyte ut støpt del fra hulrommet ved slutten av støpesyklusen. Utkasterpinner innebygd i den bevegelige halvdelen av formen utfører vanligvis denne funksjonen. Hulrommet er delt mellom de to formhalvdelene på en slik måte at den naturlige krympingen av støpeformen får delen til å feste seg til den bevegelige halvdelen. Når formen åpnes, skyver utstøterpinnene delen ut av formhulrommet.

kjølesystem

A kjølesystem er nødvendig for formen. Denne består av en ekstern pumpe som er koblet til passasjer i formen, der vann sirkuleres for å fjerne varmen fra den varme plasten. Luft må evakueres fra formhulen etter hvert som polymeren strømmer inn. Mye av luften passerer gjennom de små utkasterpinnene i formen. I tillegg er det ofte maskinert inn smale luftventiler i avskjæringsflaten. Disse kanalene er bare ca. 0,03 mm dype og 12 til 25 mm brede, slik at luften kan slippe ut, men de er for små til at den tyktflytende polymersmelten kan strømme gjennom dem.

Bruk av sprøytestøping av plast

Plastsprøytestøping er den vanligste og mest brukte metoden for masseproduksjon av plastprodukter over hele verden på grunn av sin bekvemmelighet og brukervennlighet. Plastprodukter som lages ved hjelp av denne metoden, omfatter plaststoler og -bord, deksler til elektroniske produkter, engangsskjeer og -kniver og andre bestikkprodukter.

Historien om sprøytestøping

Plastsprøytestøping ble startet av europeiske og amerikanske kjemikere som eksperimenterte med plast. Opprinnelig ble det gjort manuelt og presset inn i formen ved hjelp av Parkesine, men det viste seg å være for sprøtt og brannfarlig. John Wesley Hyatt er den offisielle oppfinneren av sprøytestøping av plast, og denne prosessen har en rik historie med en strålende ånd.

Sprøytestøping ble opprinnelig oppfunnet for å løse problemene som biljardspillere ofte står overfor. På 1800-tallet ble biljardkuler laget av elfenben som stammet fra støttenner fra elefanter. Celluloid var en av de første plastmaterialene som ble brukt til å lage biljardkuler.

Sprøytestøping av plast

Sprøytestøping av plast

Instruksjoner for prosedyren

Den vitenskapelige prosedyren som brukes til å produsere plastprodukter ved å bruke sprøytestøping er veldig enkel. Plasten smelter og legges i en stor sprøyte. Deretter plasseres den i en passende form, avhengig av produktet som skal produseres, og får avkjøles i tilstrekkelig lang tid til å oppnå ønsket form. Selve prosessen med sprøytestøping er imidlertid ikke så enkel og kan grovt sett deles inn i tre underavdelinger: injeksjonsenhet, støpeseksjon og til slutt klemme. Plastpelletsene blir gradvis flytende og gradvis injisert i injeksjonsenheten gjennom en tunnel som er helt smeltet til den når fronten av fatet. Når den når formen, avkjøles den og stivner til ønsket fast form. Formen går deretter tilbake til maskinens opprinnelige posisjon.

Alle sprøytestøpte deler starter med plastpellets med en diameter på noen få millimeter. De kan blandes med visse begrensede mengder pigmenter kalt "fargestoffer" eller opptil 15% resirkulert materiale. Blandingen mates deretter inn i en sprøytestøpemaskin. Tidlige støpeenheter brukte et stempel til å presse ned ovenfra. Det ytre området var imidlertid varmt eller kaldt, og smelteprosessen fungerte ikke som den skulle. Løsningen på dette var en frem- og tilbakegående skrue. Dette ble ofte sett på som det viktigste bidraget, og var intet mindre enn en revolusjon i plastproduktindustrien. Skruene forårsaker skjærspenningen som er nødvendig for å smelte plasten, og resten av varmen kommer fra det tradisjonelle varmebåndet som omgir maskinen. Når den smeltede plasten sprøytes inn i formen, slippes luften ut gjennom de sidelengs ventilasjonsåpningene. Honningplasten er så tykk at den ikke kan slippes ut av disse åpningene, som bare er noen få mikrometer brede.

Gravering av vitnemerker på plastprodukter er også en viktig del av markedsføringen. Dette er fordi vi må kunne autentisere og verifisere produktets ekthet ved å se etter en linje som er atskilt fra vitnemerket. Disse skapes ved hjelp av flyttbare innlegg og kan vise seg å være svært nyttige for å spore feil.

Hvis du er på utkikk etter sprøytestøpeform og sprøytestøping av deler?

Du er velkommen til å sende oss ditt krav om tilbud, du vil ha vår konkurransedyktige pris innen to virkedager.

Hvis du har sprøytestøpeform tekniske spørsmål?

Du er velkommen til å kontakte vår tekniske sjef for å løse ditt tekniske problem via steve@sinceretechs.com.

Vi har over 15 års arbeidserfaring med 15 års dyktig teknisk engelsk kommunikasjon.

Ditt prosjekt vil bli vellykket med vår støtte, vi garanterer at du blir fornøyd.

Hva venter du på? Kontakt oss, du vil ikke miste noe, få løst ditt tekniske problem.

Sprøytestøpeform Kina for ditt marked

Når det gjelder produsenter av sprøytestøpeformer i KinaDet er en rekke misoppfatninger som folk vanligvis har. En av de største misoppfatningene er at en operasjon som utføres i Kina, er en operasjon som i stor grad er upålitelig. Dette kan ikke være lenger fra sannheten. Faktisk er dette en ekstremt pålitelig virksomhet som er basert i Kina og som produserer produkter av høy kvalitet. For å forstå dette fullt ut, er det like viktig å forstå historien til denne typen virksomhet som dens nåværende status.

Injeksjonsform Kina

Injeksjonsform Kina

Hva er det som gjør akkurat denne virksomheten bedre enn de tidligere? Tidligere har denne typen operasjoner vært kjennetegnet av at kvaliteten noen ganger ikke var jevn, og noen ganger var den knapt nok til stede i det hele tatt. Dette gjelder spesielt for noen av operasjonene som ble gjennomført i Kina. Som et resultat av dette begynte folk å tvile på hvorvidt injeksjon av plastform virksomhet i Kina kunne produsere produkter av rimelig kvalitet. I dag har vi fått svar på disse spørsmålene.

I virkeligheten er dagens drift ganske pålitelig og svært vellykket. Pålitelighetsproblemene er for lengst lagt til side, og alle spørsmål om kvalitet er for lengst ryddet av veien. Dagens virksomhet distribuerer produkter til en rekke internasjonale kunder og er i stand til å produsere praktisk talt alle typer støpt plastprodukt til ethvert formål. Hele systemet benytter en toppmoderne prosess som bruker den nyeste programvaren til å designe produktene som bestilles, og deretter masseprodusere dem så raskt og effektivt som mulig. Alt dette gjøres uten at det på noen måte går på bekostning av kvaliteten.

Det beste med det hele er at man har tatt hensyn til de feilene som ble begått i den tidlige historien til slike operasjoner, for å sikre at denne typen problemer ikke oppstår når produkter produseres i dag. Faktisk har man mer enn 15 års erfaring å bygge på, og det har gjort det mulig å perfeksjonere måten alt håndteres på, fra hvordan ordrene tas inn til hvordan de produseres og sendes ut. Det faktum at det brukes programvare til å lage praktisk talt alle typer produkter, minimerer sjansene for feil og gjør at alt går svært raskt. Sluttresultatet er at den eneste begrensningen på hvilke typer produkter som kan produseres, er fantasien til den som bestiller produktet i første omgang.

I tillegg får hvert produkt sin egen prosjektleder, og alt kan produseres til en kostnad som er mer enn rimelig. Dette bidrar til å spre denne typen virksomhet, og selv om systemet er basert i Kina, produseres det hver eneste dag produkter av høy kvalitet som deretter sendes ut til steder over hele verden. Tenk deg praktisk talt hvilken som helst plastformdel som for eksempel de delene som brukes til kalkulatorer, DVD-spillere eller skrivere, og de kan sannsynligvis spores direkte tilbake til denne typen operasjoner. Uten dem ville det vært så godt som umulig å operere i verden slik den ser ut i dag.

Hvorfor velge Kina plastsprøytestøpingstjeneste?

Kina er kjent som et produksjonssenter og som eksportør av plastprodukter. Kinesiske produsenter av plastsprøytestøping garanterer produkter av høy kvalitet som er pålitelige og langvarige, det er mange plaststøpeselskaper i Kina, det er hodepine for deg å finne en riktig Kina mold maker fra den enorme ressursen, Sincere Tech er en av de ti beste beste plastform- og støpeselskapene i Kina, vi tilbyr deg 100% fornøyd kvalitet og service, gå til hjemmesiden vår ved å https://plasticmold.net/ for å få vite mer.

All informasjonen er hentet fra Wikipedia, men vi har sortert den slik at den er lett å lese. Hvis du vil vite mer, kan du gå til sprøytestøpeform Wikipedia.

Hvis du vil vite mer om produkter laget av sprøytestøpeform kina selskap? Du er velkommen til å gå til vår startside for å vite mer, eller send oss e-post, vil vi svare deg med 24 timer.

 

Gassassistert sprøytestøping

I plastproduksjon, Gassassistert støping har fått betydelig oppmerksomhet på grunn av sin kostnadseffektivitet. Det har nå blitt en velutviklet teknologi som er mye brukt i støping av intrikate detaljer for å oppfylle nøyaktige spesifikasjoner. I motsetning til konvensjonelle støpeteknikker, der det brukes harpiks eller polymerer, utnyttes gassassistert støping vanligvis ved å bruke rent nitrogen med en renhet på opptil 98% i en inert form. Denne gassinjeksjonen tvinger noe av plastmaterialet til å etterlate det ferdige produktet med hulrom i strukturen. I tillegg er lave materialkostnader, kort produksjonstid og produksjon av lette, men likevel stringente deler noen av kjerneegenskapene.

Fortsett å lese dette blogginnlegget fordi denne artikkelen inneholder grundige detaljer om gassassistert sprøytestøping, dens bruksområder, deler laget av denne enorme teknikken, og så mye mer å vite.

Gassassistert sprøytestøping: En kort oversikt

Gassassistert sprøytestøping følger samme sekvens som konvensjonell støping. Formen fylles vanligvis 70 til 80% med smeltet plast, noe som medfører den forhåndsdefinerte formen på tiltenkte deler eller produkter. Det gjenværende volumet i formen fylles med ren N2-gass for å unngå at det dannes hulrom i de støpte produktene. Denne teknikken er fordelaktig for å produsere deler med stramme dimensjoner og glatt overflatefinish. I tillegg er risikoen for vridning og forvrengning minimal ved gassassistert sprøytestøping.

Vanlige typer gassassistert sprøytestøping

Vanligvis bruker produktprodusenter to typer gassassistert sprøytestøpingsteknikk: intern og ekstern. Hver type har en tre-trinns arbeidsflyt som er forskjellig fra de andre. den detaljerte prosedyren er skissert nedenfor.

Innvendig gassassistansestøping

La oss diskutere dens arbeidsmekanisme;

  • Hell først den smeltede plasten i formen ved hjelp av kanaler.
  • Deretter blåser du høytrykks inertgass, vanligvis nitrogen (98% av renhet), for å danne en boble i den smeltede plasten.
  • Til slutt tvinger gassens kraft på plasten den til å ta form etter støpeformen når delen formes.

Denne metoden er fordelaktig når man skal designe geometrier med tynne vegger og relativt lav tetthet. Gasstrykket er konstant, noe som hindrer veggene i å krympe eller forvrenge seg, og dermed sikrer at tynnveggede strukturer blir nøyaktig formet. Derfor er denne prosessen best egnet for produksjon av tynnveggede deler.

Dessuten er produksjonssyklustidene betydelig kortere enn ved ekstern gassassistert sprøytestøping. Delenes tynne seksjoner eller hule områder bidrar til at de avkjøles raskere enn massive deler.

Utvendig gassassistansestøping

La oss diskutere prinsippet om å jobbe;

  • I motsetning til andre materialer trenger ikke gassen inn i materialet og danner hulrom eller kanaler.
  • Det kommer inn i formen gjennom små kanaler på den ene siden, mens den andre er eksponert.
  • Gasstrykket tvinger den smeltede harpiksen til å komme i kontakt med formveggene fra den siden av delen som ikke er synlig fra et estetisk synspunkt.

Denne metoden er spesielt kjent for den høye kvaliteten på overflatefinishen som kan oppnås.

Dessuten er denne teknikken svært effektiv når det gjelder å håndtere deler med store overflater og intrikate, buede overflater. Gasskanalene er plassert parallelt langs hele overflaten, noe som gjør det enklere å påføre trykk og produsere store flater med komplekse former.

Gasstype som brukes i gassassistert sprøytestøping?

Nitrogen er en allment tilgjengelig inertgass som brukes til å støpe produkter. Den påvirker ikke plasten og opprettholder dens egenskaper og utseende. Trykk brukes for å spre materialet riktig og minimere bruken av plastharpiks.

Materialer som brukes i gassassistert sprøytestøping:

Vanlige materialtyper inkluderer;

Akrylnitril-butadien-styren (ABS):

ABS er robust, elastisk og har lav tetthet, noe som gjør det ideelt for bruk på ulike områder. Det er mye brukt i bilreservedeler, beskyttelseshus og andre produkter. I noen tilfeller kan det imidlertid forvandles, det vil si deformeres.

Polyetylen med høy tetthet (HDPE):

HDPE er valgt på grunn av sin overlegne værbestandighet, kjemiske egenskaper og seighet, noe som gjør det ideelt for utendørs bruk og eksponering for ulike miljøforhold. Det kan imidlertid ha lavere stivhet sammenlignet med andre materialer som brukes til å konstruere ulike strukturer.

Polypropylen (PP):

Polypropylen er kjent for sin kjemiske inertitet. Det er også en dårlig elektrisk leder, har høy strekkfasthet og et høyt smeltepunkt, så det er sterkt og tåler store belastninger. Det mister imidlertid noen av egenskapene sine hvis det utsettes for direkte sollys, så det er ikke egnet for bruk utendørs.

Polykarbonat (PC):

Polykarbonat er valgt ut på grunn av sin slagfasthet og egner seg derfor godt til bildeler og sikkerhetsutstyr. Det er også svært slitesterkt og mister ikke styrken selv under høye temperaturer. Polykarbonat er imidlertid et relativt kostbart materiale sammenlignet med andre termoplaster av motorkvalitet.

Polystyren med høy slagfasthet (HIPS):

HIPS spiller en viktig rolle når det gjelder å oppfylle kravene til slagfasthet. Det gir dimensjonsstabilitet og skalerbarhet i gassassisterte sprøytestøpte produkter. Dessuten er det vanligvis enkelt å maskinbearbeide HIP. Kan sammenlignes med andre tekniske materialer. HIPS har høye termiske egenskaper og tåler tøffe forhold. For det meste er bruken høyere i marine applikasjoner.

Fordeler med gassassistert sprøytestøping:

Gassassistert sprøytestøping bidrar til å gjenskape deler med presise og nøyaktige dimensjoner. Det reduserer også syklustiden i prosessen og øker produksjonshastigheten og effektiviteten i hele prosessen. Gassassistert sprøytestøping bidrar også til å forhindre overflatedefekter, noe som forbedrer det estetiske utseendet og følelsen av delene. I tillegg minimeres skjevheter, synkemerker og indre spenninger som er skadelig for ytelsen, kvaliteten og levetiden til delene. Prosessen er økonomisk i den forstand at den bruker mindre materiale, på grunn av de hule seksjonene. Dessuten gir gassstøping høy styrke og stivhet og lav vekt, og dermed et høyt styrke/vekt-forhold.

Ulemper med gassassistert sprøytestøping:

Selv om det er fordelaktig for store produksjonskjøringer, kan det oppstå noen problemer med gassassistert støping, spesielt når flere kaviteter i ulike størrelser er involvert i emnedannelsen. Dermed kan problemer i ett hulrom kreve at hele støpeformen må fjernes, mens andre hulrom forblir ubrukt, noe som senker produktiviteten og fører til høyere kostnader for prosjektet. Denne støpeteknikken er også mer forseggjort enn de andre. Den krever spesialutstyr og spesialkompetanse, og er derfor kostbar. Andre designbegrensninger kan også skyldes behovet for å kanalisere og lufte ut gassen, noe som kan begrense designet og kanskje må manipuleres for å oppnå det beste resultatet.

Hva er noen produkteksempler laget av gassassistert sprøytestøping?

Gassassistert sprøytestøping brukes i stor utstrekning til å lage tynnveggede symmetriske prototyper og sylindriske seksjoner eller hulrom ved å påføre et høyt trykk på rundt 35 MPa til 70 MPa sammen med en inert gass (vanligvis nitrogen med en renhet på 98%). Metoden brukes ofte i mange produkter i ulike bransjer. For eksempel produseres det stolarmer, dashborddeler og seterammer i møbel- og bilindustrien. I husholdningsapparater brukes gassassistert støping til å lage støvsugerhus og vaskemaskindører med komplekse former og den nødvendige stivheten.

Denne prosessen brukes også til sportsutstyr, for eksempel håndtak til tennisracketer og kjerner til baseballkøller. Innen kontor- og elektronikkindustrien er skriverrammer, skjermstativer og TV-rammer noen av produktene som kan produseres ved hjelp av denne støpeteknikken, siden den kan skape intrikate design og minimere materialbruken. Gassassistert sprøytestøping brukes også til produksjon av medisinsk utstyr, for eksempel rammer til rullatorer og deler til rullestoler, samtidig som utstyrets styrke og nøyaktighet opprettholdes. I lydindustrien produseres høyttalerhus med forbedret mekanisk styrke og utseende takket være gassassistert sprøytestøping.

Støping med gassassistanse

Er gassassisterte sprøytestøpeprodukter sterke og pålitelige for langvarig bruk?

Denne prosessen resulterer i deler som både er lette og sterke fordi det dannes hulrom som øker stivheten i konstruksjonen, samtidig som vekten reduseres. Disse produktene er utformet for å gi god støtdemping, noe som gjør dem egnet til bruk i områder der det kreves styrke.

Hvor lenge varer et produkt laget med gassassistert sprøytestøping?

Levetiden til sprøytestøpte produkter med gassassistanse avhenger av visse faktorer, for eksempel materialtypen som brukes, delens design og den tiltenkte bruken av delen. Hvis disse produktene brukes og vedlikeholdes på riktig måte, kan de vare i mange år. Den generelle levetiden og servicen vil variere avhengig av bruksområde og produkttype.

Gassassistert sprøytestøping: Er det dyrt?

Det er imidlertid viktig å forstå at gassassistert sprøytestøping er relativt mer kostbart enn de andre sprøytestøpeprosessene. De høyere kostnadene skyldes behovet for å bruke spesialutstyr, instrumenter og kvalifisert personale for å utføre prosessen.

Selv om det finnes noen ulemper, for eksempel at maskinverktøyet har en høyere startkostnad enn et konvensjonelt maskinverktøy, kan man oppnå følgende fordeler: I tillegg påvirkes effektiviteten ved gassassistert sprøytestøping av faktorer som produktets bruksområde og produksjonsvolumet.

Gassassistert sprøytestøping og reaksjonssprøytestøping: Viktige forskjeller

GAIM og RIM er to forskjellige støpeprosesser. GAIM er en prosess der plastmaterialet sprøytes inn sammen med høytrykksgass for å danne hulrom i delen uten at termoplastene polymeriseres. RIM innebærer derimot bruk av flytende mellomprodukter som isocyanat og polyol, som reagerer kjemisk for å danne en fast polymerdel. Alle prosesser trenger verktøy og utstyr for å kunne utføres på en effektiv måte.

Gassassistert sprøytestøping hos Sincere Tech

Våre nye tjenester omfatter blant annet rask prototyping, som gjør det mulig å lage fysiske modeller av ideene dine på kort tid, slik at designen kan forbedres ytterligere og produktet utvikles raskere.

  • Vår ekspertise er overstøping, en prosess der to eller flere substrater eller materialer sammenføyes for å forbedre ytelse, utseende og styrke.
  • Vår kompetanse innen innsatsstøping gjør oss i stand til å støpe innsatser i støpte komponenter, noe som forbedrer montering og produktfunksjonalitet.
  • Ved to-shot støping kan vi lage kompliserte deler med flere materialer i én prosess, noe som minimerer monteringsarbeidet og åpner for nye designmuligheter.
  • Vi tilbyr også tilleggstjenester som produktmontering, pakking og logistikk for å hjelpe deg med å administrere forsyningskjeden din mer effektivt.
  • Velg Sincere Tech Mould som din leverandør av gassassistert sprøytestøping

og nyte godt av våre omfattende tjenester, strenge kvalitets- og miljøpolitikk og lidenskap for å levere mer enn forventet til våre kunder.

  • La oss samarbeide og gjøre visjonene dine til virkelighet.

Sammendrag

I denne artikkelen deler Sincere Tech verdifull innsikt om gassassistert sprøytestøping ved å gi en beskrivelse av hvordan det fungerer og hvordan det brukes i industrien. SincereTech har et bredt spekter av produksjonsløsninger for dine behov, for eksempel sprøytestøping og andre tjenester som trengs for prototyping og produksjon. Kontakt oss nå, og få et gratis online tilbud på ditt plastproduksjonsprosjekt.

Vanlige spørsmål

Q1. Hvilket utstyr er nødvendig for gassassistert sprøytestøping?

Gassassistert sprøytestøping innebærer bruk av spesialutstyr, for eksempel gassinjeksjonsenheter, gasskontrollsystemer og støpeformer med kanaler for gassen. Et annet krav til sprøytestøpemaskin er dens evne til å håndtere gassinjeksjonsprosesser.

 

Q2. Nevn noen problemer som oppstår ved gassassistert sprøytestøping.

Noen av de kritiske problemene man kan støte på i løpet av prosessen, er problemer med gassinntrengning, dannelse av gassfeller, utlufting, regulering av trykk og opprettholdelse av ensartethet i delene som produseres i løpet av produksjonssyklusen.

Q3. Hva er kritiske kvalitetskontrolltiltak i gassassistert sprøytestøping?

Noen av de viktigste tiltakene som er tatt i bruk i kvalitetskontrollen, inkluderer kontroll av gasstrykket, innstilling av riktige parametere i prosessen, hyppig vedlikehold av formen, prosesskontroller for å unngå feil på deler og sikre at designen oppfyller de nøyaktige kravene.

Q4. Kan gassassistert sprøytestøping brukes til høyvolumproduksjon?

Ja, gassassistert sprøytestøping egner seg for både lavvolum- og høyvolumproduksjon. Likevel kan faktorer som syklustid, verktøykostnader og delkompleksitet være avgjørende for om det er egnet for storskalaproduksjon.

Q5. Hvilke bransjer bruker gassassistert sprøytestøpeprosess?

Denne prosessen brukes ofte i bilindustrien, forbruksvarer, elektronikk, medisinsk teknologi, industriteknologi og sports- og fritidsartikler for å produsere deler med lav vekt, tynne vegger og høy mekanisk styrke.

støping av flytende silikongummi

Vi er Silicone Injection Molding China-selskap som tilbyr plastform / støpetjeneste, gummiformer, Sprøytestøping av silikon, flytende silikoninjeksjonsstøpedeler til verden, send oss tegningen din, så vil vi sitere deg om 24 timer.

Hva er Sprøytestøping av silikon

Silikon er et slags miljøvennlig råmateriale, silikonmateriale er elsket av mennesker med sine forskjellige perfekte egenskaper. silikon sprøytestøping del har mykhet og giftfrie egenskaper, slik at mye brukt i industriell tetting og medisinsk utstyr. Spesielt arbeidstemperaturen: mellom minus 60 til 250 grader, sammenligner ingen plastfirmaer fordelene. Ved å bruke silikon til å forsegle metall- eller plastdeler for å danne noen nye egenskaper og gjør produktet mykt og hardt. For eksempel silikonet overstøping kjøkken Spatel er miljøvennlig og er elsket av forbrukerne. Silikoninjeksjonsstøpedeler og plastdeler har veldig like, men har forskjellig behandling.

silikon sprøytestøpemaskiner

silikon sprøytestøpemaskiner

Å jobbe med oss er så enkelt, du trenger bare å sende oss tegningen og kravet ditt, så kan du lene deg tilbake og vente på delene for testing til du godkjenner delene eller formene, vi tar alle jobbene for deg fra formdesign, moldproduksjon, prøvetaking, massiv produksjon, montering og levering til guder direkte til lagerhuset ditt, vi har det beste forsendelsesbyrået som kan spare opptil 30% av forsendelseskostnader enn andre,

Sprøytestøping av silikon produserer støpte komponenter laget av silikon. Silikongummi er et tokomponent, syntetisk, fleksibelt, gummilignende materiale laget av silikonelastomerer som kan herdes ved romtemperatur til en fast elastomer som brukes til støping. Det er varmebestandig, slitesterkt og fritt for allergener eller utvaskbare kjemikalier. Flytende silikon ligner på vanlig silikon, men har andre bearbeidingsegenskaper.

Det kjøpes inn som et todelt råmateriale med en fettlignende viskositet.
I dag blir sprøytestøping av flytende silisiumgummi stadig viktigere. En av grunnene til dette er de økte kravene til ytelsen til de ferdige artiklene. I tillegg ser stadig flere produsenter av gummideler fordelene med den høye automatiseringsgraden og produktiviteten.

Ulike måter å sprøytestøping av flytende silikon

Støpeprosesser som brukes av leverandører av silisiumstøpingstjenester inkluderer støping, kompresjonsstøping, dyppstøping, sprøytestøping, reaksjonssprøytestøping, rotasjonsstøping og overføringsstøping.

Mens det i støpeprosessenhelles det flytende materialet i en åpen form, i kompresjonsstøping en silikonklump presses mellom to oppvarmede formhalvdeler. På den annen side dyppstøping er en prosess som ligner på varmdyping, der det ferdige produktet er den smeltede plastisolen som er fjernet fra den dyppede formen. Men i sprøytestøping, flytende silikon presses inn i en avkjølt form under et enormt trykk. I Reaksjonssprøytestøping (RIM) blandes to eller flere reaktive kjemikalier i høy hastighet mens de sprøytes inn i en form. I rotasjonsstøping hule former fylt med silikonmateriale er festet til rørlignende eiker som strekker seg fra et sentralt nav. I overføringsstøpingklemmes de to formhalvdelene sammen, og silikon presses inn i formen ved hjelp av trykk.

Hvorfor foretrekkes bruk av silikongummi i sprøytestøping

Silastisk silisiumgummi er et tyntflytende materiale, og viskositeten avhenger derfor av skjærhastigheten. Når skjærhastigheten øker, blir produktet mindre viskøst. Det er denne effekten som er svært gunstig for sprøytestøpeprosessen. I begynnelsen av sprøytestøpeprosessen bør innsprøytningshastighetsprofilen programmeres på en slik måte at volumstrømmen er høy nok til at den flytende silisiumgummien ikke begynner å vulkanisere før hulrommet er fylt, for å unngå at materialet svir seg. Dermed er flytende silisiumgummi mye brukt for prosessen med sprøytestøping på grunn av følgende egenskaper:

  1. Løsemiddelfri med lav og allsidig viskositet.
  2. Enkel blanding og pigmentering
  3. Rask prosessering sammenlignet med løsemiddeldispersjon og gjør det vanligvis mulig å påføre et komplett belegg i én omgang
  4. Prime mindre vedheft til glass og enkelte andre underlag.
  5. Meterblandet flytende silisiumgummi av plast kan dyppbelegges eller mates til et tverrhode for ekstruderingsbelegg med støtte.

Vulkaniserte silikongummiprodukter har følgende egenskapers:

(1) egenskapen motstandsdyktig mot høy og lav temperatur: med langvarig bruk ved 200 ℃ og fleksibilitet ved -60 ℃;
(2) Elektrisk isolasjonsegenskap: silikongummi gir utmerket dielektrisk egenskap som er mye høyere enn den generelle organiske, spesielt under høy temperatur med dielektrisk styrke nesten uavhengig av temperatur i området 20-200 ℃.
(3) Utmerkede ytelser av værbestandighet, ozonmotstand og motstand mot ultrafiolett stråling uten sprekker selv etter langvarig utendørs bruk. Det antas generelt at silikongummien kan brukes utendørs i mer enn 20 år.
(4) Utmerket egenskap for permanent deformasjon under høy temperaturkompresjon.
(5) Eksellenser inkluderer god prosesseringsytelse, lett å forme osv.; en rekke produkter kan lages ved å presse ut varm luft med metoder for vulkaniseringsstøping, mønsterstøping, utvidende støping og så videre.

Med utmerket ytelse og god teknisk og økonomisk effekt har silikongummiprodukter et bredt spekter av bruksområder innen ulike områder innen luftfart, romfart, atomenergi, elektriske redskaper, elektronikk, instrumentering, bil, maskiner, metallurgi, kjemisk industri, medisinsk helse og dagligliv.

Bruksområde og egenskaper for sprøytestøpte flytende silikonprodukter:
De har utmerket gjennomsiktighet, utmerket rivestyrke, god elastisitet, utmerket termisk stabilitet og værbestandighet, gulningsmotstand, varmealdringsbestandighet og brukes hovedsakelig i kakeformen, smokker til spedbarn, medisinske katetre, sprøytestøpehåndverk og så videre.

Fordeler med å jobbe med silikon sprøytestøping Kina

Støping av silisiumgummi har kommet langt i løpet av de siste to tiårene. Fra å ha sine røtter i noen få spesialapplikasjoner der de førsteklasses fysiske egenskapene telte mer enn prisen, har denne herdeplasttypen opparbeidet seg en liten, men solid nisje innen medisin og bilindustri. Nå, med stadig flere nye bruksområder, har denne nisjen begynt å sprekke i sømmene.

Hvis du skal drive virksomheten din med silikoninjeksjonsstøping eller gummistøping? Av ethvert eller ditt nye prosjekt som trenger silikoninjeksjonsstøpedeler, foreslår vi at du finner et silikoninjeksjonsstøping Kina-selskap for å samarbeide med virksomheten din, når du jobber med et kinesisk selskap, vil du ha noen fordeler for din nye modell og din virksomhet.

Nummer én,

Når du jobber med silikon sprøytestøping kina leverandører, vil du ha en veldig konkurransedyktig pris, slik at du kan spare budsjettet på den nye modellen din, spesielt hvis du er første gang du driver en bedrift, vil dette være en av de viktigste tingene for å avgjøre om virksomheten din vil gå greit eller ikke.

Fordel nummer to,

Hvis du velger en sprøytestøpeform kina leverandør for dine plaststøpedeler, silikongummistøpedeler, vil du bevege deg raskere enn din lokale leverandør, alt av Kinesiske silikonstøpefirmaer er hardtarbeidende, rask leveringstid, dette vil spare tid og jobbe prosjektet ditt raskere på markedet, når du legger litt penger i prosjektet, vil det raskere være raskere å få litt fortjeneste fra prosjektet ditt.

Det er selvfølgelig noen ulemper ved å jobbe med en Kinesisk silikonstøpefirmafor eksempel språket. Men her trenger du ikke å bekymre deg lenger, i vår fabrikk har vi en profesjonell teknisk leder som snakker flytende engelsk som vil løse alle dine problemer, du kan kontakte oss via e-post eller telefon.

sprøytestøping veggtykkelse

Hva er Skreddersydd sprøytestøping?

Det første spørsmålet som dukker opp når man hører det, er hva som er Skreddersydd sprøytestøping?

Skreddersydd sprøytestøping refererer til produksjon av plastdeler for spesifikke bruksområder, dvs. tilpasning av plastinjeksjonskomponenter i henhold til kundens krav.

Tilpassede sprøytestøpte deler

Sprøytestøping er en prosess der plastpellets smeltes og sprøytes under høyt trykk inn i et formhulrom. De støpte delene støpes deretter ut, og prosessen gjentas. De ferdige produktene kan deretter brukes som de er, eller som en komponent i andre produkter. For å gjøre dette kreves det en sprøytestøpemaskin og verktøy (ofte kalt form eller dyse). Støpemaskinen består av en klemmeenhet som åpner og lukker formen automatisk, og en innsprøytningsenhet som varmer opp og sprøyter materialet inn i den lukkede formen.

Sprøytestøping krever svært høyt trykk, og maskinen er vanligvis hydraulisk eller, i økende grad, elektrisk. Verktøy for sprøytestøping i produksjon må kunne tåle høyt trykk og er vanligvis laget av stål eller aluminium. De potensielt høye verktøykostnadene er ofte avgjørende for økonomien i en plaststøping søknad. Sprøytestøping er en effektiv måte å lage spesialtilpassede deler på.

I utgangspunktet er de fleste sprøytestøpedeler tilpasset injeksjonsform, fordi hver eneste design trenger sin egen tilpassede injeksjonsform, med mindre du kjøper de ferdige delene fra markedet, ellers må du lage din egen tilpassede injeksjonsform for din tilpassede design.

Skreddersydd sprøytestøping

Sprøytestøpeprosess : Plastbearbeiding, lag deler av plastmateriale

Å finne den rette kilden for din spesialtilpassede sprøytestøping av termoplastdeler er like enkelt som å velge DONGGUAN SINCERE TECH CO.LTD. Med SINERE TECH er du garantert profesjonelle kvalitetssikringsstandarder, det nyeste innen teknologisk utstyr og innovative, kostnadseffektive produksjonsteknikker.

Sprøytestøpingsprosessen: En kort beskrivelse

Det er tre hovedkomponenter i sprøytestøpeprosessen. Selve sprøyteapparatet som smelter og deretter overfører plasten, støpeformen, som er spesialdesignet, og klemmen som sørger for kontrollert trykk. Den plastform er et spesialdesignet verktøy med en base og ett eller flere hulrom som til slutt skal fylles med resin. Injeksjonsenheten smelter plastgranulatet og sprøyter det deretter inn i formen ved hjelp av enten en frem- og tilbakegående skrue eller en stempelinjektor.

Den frem- og tilbakegående skruen gjør det mulig å injisere mindre mengder resin i de totale skuddene, noe som er bedre for produksjon av mindre deler. Etter injeksjon avkjøles formen kontinuerlig til harpiksen når en temperatur som gjør at den stivner.

Komplikasjoner med sprøytestøping

Sprøytestøping komplikasjonene er få og kan lett unngås ved å være nøye med utformingen av plastform, selve prosessen og vedlikehold av utstyret. Deler kan bli brent eller svidd når temperaturen er for høy, noe som noen ganger skyldes at syklustiden kan være for lang. Dette fører til at harpiksen blir overopphetet. Forvrengning av deler skjer når det er ujevn overflatetemperatur på formene.

Overflatefeil (ofte kalt bobler) oppstår når smeltetemperaturen er for høy, noe som fører til at harpiksen brytes ned og produserer gass. Dette kan også skyldes fuktighet i harpiksen. En annen komplikasjon er ufullstendig fylling av hulrommet, som oppstår når det ikke slippes nok resin ut i formen, eller hvis injeksjonshastigheten er for lav, noe som fører til at resinet fryser.

Kjører en Skreddersydd sprøytestøping Virksomhet

Skreddersydd sprøytestøping av plast er en konkurranseutsatt bransje, og for å overleve bør du finne din nisje. De fleste spesialstøpere i dag har funnet en nisje. Gjennom erfaring har støperen blitt god til å støpe en bestemt type deler, til å støpe en bestemt type materiale eller til å arbeide i et bestemt segment av markedet. Med andre ord har han tilegnet seg en ekspertise og holdt fast ved den.

Sprøytestøping av termoplast er den mest brukte av alle plastbehandlingsmetoder. Sprøytestøping er en produksjonsteknikk for å lage deler av plastmateriale. Smeltet plast sprøytes ved høyt trykk inn i en form, som er den omvendte av den ønskede formen.

Termoplast er plast som kan varmes opp og omformes om og om igjen når den først er formet.

PP-sprøytestøping

PP-sprøytestøping

Formen er laget av metall, vanligvis enten stål eller aluminium, og presisjonsbearbeides for å forme egenskapene til den ønskede delen. SINCERE TECH tilbyr økonomiske plastformer av høyeste kvalitet som er tilgjengelige i dag, med færre bevegelige deler for å redusere vedlikeholds- og reparasjonskostnadene.

Sprøytestøpemaskinen reduserer pelleterte harpikser og fargestoffer til en varm væske. Denne slurryen, eller "smelten", presses inn i en avkjølt form under enormt trykk. Etter at materialet har stivnet, løsnes formen, og den ferdige delen skytes ut.

En sprøytestøpemaskin utfører hele prosessen med plaststøping. Disse maskinene brukes både til å varme opp plastmaterialet og forme det. Ved hjelp av ulike former kan formen på de produserte komponentene endres.

Sprøytestøpemaskiner består av to grunnleggende deler: injeksjonsenheten, som smelter plasten og deretter sprøyter eller flytter den inn i formen, og fastspenningsenheten, som holder formen lukket under fyllingen. Enheten klemmer formen i lukket posisjon under injeksjonen, åpner formen etter avkjøling og støper ut den ferdige delen.

Skreddersydde sprøytestøpte plastdeler:

Deler av høy kvalitet, garantert i henhold til spesifikasjonene, utvidet garanti, beholder formens integritet, avansert design, kvalitetssikring

Å finne den rette kilden for din spesialstøpte plastprodukter er så enkelt som å velge https://plasticmold.net/. En av topp 10 muggprodusenter i Kina som leverer tilpassede sprøytestøpeformer og plaststøpte deler til hele verden.

Med SINCERE TECH er du garantert profesjonelle kvalitetssikringsstandarder, det nyeste innen teknologisk utstyr og innovative, kostnadseffektive produksjonsteknikker.

Tilpassede sprøytestøpte deler: SINCERE TECCHs fordeler

Sprøytestøpingsprosessen gir de laveste stykkprisene som er tilgjengelige, men verktøy (produksjon av plastformer) er prisene generelt de høyeste. Derfor må vi lage alle formene internt for å skape topp kvalitet, og plastform og den laveste prisen for våre kunder, vår tilpassede mold koster så lavt som $500. kontakt for å få pris for din egen spesialtilpasset sprøytestøping av plast.

Og de står ved sitt ord. De tilbyr kundene sine muligheten til å bli med i deres utvidede garantiprogram som garanterer plastform vi designer og bygger for deg vil beholde sin integritet gjennom et bestemt antall sykluser, hvis vi lagrer formene for deg, vil vi gjøre det gratis vedlikehold av mugg for deg.

Skreddersydd sprøytestøping

sprøytestøpte plastdeler

For mer informasjon, se hjemmesiden.

Tilpassede sprøytestøpte applikasjoner

Sprøytestøping er mye brukt til produksjon av en rekke ulike deler, fra den minste komponent til hele karosseripaneler på biler. Det er den vanligste produksjonsmetoden, og noen av de vanligste produktene er flaskekapsler og utemøbler.

Vi har evnen til å produsere et bredt utvalg av spesialtilpassede sprøytestøpte deler og komponenter, for alle typer industrier, inkludert

  • Koblinger
  • Wire Shields
  • Flasker
  • Saker
  • Brytere
  • Hus
  • Ansiktsplater
  • Leker
  • Innfatninger
  • Trykknapper
  • Knotter
  • Lette rør
  • Skjold
  • Periferiutstyr til datamaskiner
  • Telefondeler
  • Gir
  • Deler til skrivemaskin
  • Deler til vindusheis
  • Sikringsblokker
  • Kiler
  • Trimplater
  • DVD-braketter
  • Ekstruderte kraner
  • A/C-ventilasjon
  • Girskifterknotter
  • Stikkontakter for baklykter
  • Blodprøvetester
  • Båtdeler
  • Navneskilt
  • Spenner
  • Flaskebånd
  • Komponentbokser
  • Spoler
  • Spoler
  • Deler til sikkerhetsbelte
  • Avstandsstykker
  • Linser
  • Ventilasjonsåpninger
  • Klipp
  • Blomsterpottebaser
  • Aktuatorer
  • Radiatortopper
  • Knutepunkt
  • Bokser
  • Motorhus
  • Nøkkelbrikker
  • Kosmetisk emballasje

For å gi den beste prosessen for prosjektet ditt, er du velkommen til å sende oss en e-post, vi vil tilby deg den beste løsningen for ditt spesialtilpasset sprøytestøping av plast  prosjekt.