태그 보관용: 플라스틱 성형 기술

중국 금형

플라스틱 몰드란 무엇인가요?

플라스틱 몰드 (몰드) 는 제조 공정에서 플라스틱 부품 및 제품을 만드는 데 사용되는 도구 또는 금형입니다. 플라스틱 플라스틱 몰드 은 일반적으로 금속 또는 기타 단단한 강철(H13, DIN1.2344, DIN 1.2343, 2083, NAK80 또는 이와 유사한 강철)로 만들어지며 녹은 플라스틱이 식고 굳을 때까지 특정 모양으로 고정하도록 설계되어 있습니다.

플라스틱 금형 제조업체는 일반적으로 이 공정을 사용하여 수백만 개의 플라스틱 부품을 제작합니다. 이러한 부품은 복잡한 디자인과 동일한 모양을 가질 수 있습니다. 다른 방법으로는 제작이 어렵거나 불가능한 플라스틱 사출 금형은 많은 산업에서 사용됩니다. 여기에는 다음이 포함됩니다. 자동차 플라스틱 사출 성형 제품건설 산업, , 가정용 애플리케이션 제품, 가구 산업, 전자 산업, 플라스틱 성형 장난감, 소비자 제품 등입니다.

플라스틱 금형 사출 제작은 전문가가 제조해야 하는 매우 복잡한 작업입니다. 사출 금형 제작자. 다음은 플라스틱 몰드를 만드는 간단한 단계입니다.

  • 먼저 부품 디자이너가 원하는 모델을 만들어야 합니다. 또는 사출 금형 공급업체를 고용하여 필요에 따라 최종 제품을 설계할 수도 있습니다.
  • 둘째, 제품 디자인이 승인되면 금형 제작업체를 찾아 완전한 금형 디자인을 만들어야 합니다. 금형 디자인이 완성되면 플라스틱 금형 제작을 시작할 수 있습니다. 플라스틱 사출 금형 제조 공정에는 드릴링, 거품 가공, 와이어 절단, CNC 가공, EDM, 연마 등이 포함됩니다.
  • 셋째, 플라스틱 몰드 제작의 마지막 단계는 몰드 피팅입니다. 금형 제작이 완료되면 금형 피팅을 수행해야 합니다. 이를 통해 부품이 올바른 위치에 있는지 확인합니다. 금형 피팅은 금형 품질을 확인하고 발생할 수 있는 문제를 미리 개선할 수 있는 유일한 방법입니다.
  • 넷째, 금형 피팅이 완료되면 실제 사출 성형 공정 시작할 수 있습니다. 사출 성형 공정 초기에는 금형 시험이라고 불렀습니다.. 금형 시험에서 대규모 생산에 이르기까지 몇 가지 작은 사출 성형 문제를 해결해야 합니다. 첫 번째 금형 시험에는 일반적으로 해결해야 할 몇 가지 문제가 있기 때문에 여러 번의 금형 시험을 수행해야 합니다.

고객이 샘플을 승인할 때까지 두세 번의 금형 시험을 거친 후 대량 생산을 시작할 수 있었습니다. 따라야 할 프로세스는 간단합니다. 부품 설계, 금형 설계 및 금형 제조가 포함됩니다. 이를 통해 완벽한 외관의 플라스틱 제품을 만들 수 있습니다.

플라스틱 금형 제조 는 사실 복잡한 과정입니다. 플라스틱 몰드를 제작하려면 전문 플라스틱 몰드 제작 업체를 찾아야 합니다.

플라스틱 사출 성형 도구

플라스틱 몰드 기술의 장점은 무엇인가요?

다음과 같은 장점이 있습니다. 플라스틱 몰드 기술:

높은 효율성과 빠른 생산

그 이유는 여러 가지가 있습니다. 플라스틱 사출 성형 는 가장 일반적이고 성공적인 성형 방법으로 유명합니다. 다른 방식에 비해 공정이 빠릅니다. 생산 속도가 빠르기 때문에 더 성공적이고 저렴합니다. 속도는 금형의 크기와 복잡성에 따라 다르지만 각 사이클 사이에는 약 15-120초가 소요됩니다.

더 나은 강도

강도는 플라스틱 사출 성형 부품을 설계할 때 결정해야 하는 중요한 요소 중 하나입니다. 설계자는 부품이 견고해야 하는지 유연해야 하는지 알아야 합니다. 이 정보는 리브 또는 거셋을 조정하는 데 도움이 됩니다. 고객이 부품을 어떻게 사용할 것인지, 부품이 어떤 환경에 노출될 것인지 이해하는 것도 중요합니다.

설계 고려 사항의 적절한 균형을 찾으면 부품의 안정성과 강도에 대한 요구 사항을 해결하는 데 도움이 됩니다. 소재 선택은 부품의 강도에 또 다른 중요한 역할을 합니다.

폐기물 감소

검색할 때 대량 사출 성형 공급업체의 친환경 제조 노력을 고려하는 것이 중요합니다. 이러한 노력은 지속 가능성, 품질 및 안전에 대한 헌신을 보여줍니다.

성형 과정에서 여분의 플라스틱이 생산됩니다. 남는 플라스틱을 재활용할 수 있는 시스템을 갖춘 업체를 찾아야 합니다. 최고의 친환경 플라스틱 사출 성형 업체는 첨단 기계를 사용하여 폐기물, 포장 및 운송을 줄입니다.

낮은 인건비

인건비는 일반적으로 다음과 같은 경우 상대적으로 낮습니다. 플라스틱 사출 성형 다른 종류의 성형과 비교할 때. 부품을 고품질로 신속하게 생산할 수 있어 효과와 효율성이 향상됩니다.

성형 장비는 일반적으로 자동 게이팅 기계 도구로 작동합니다. 따라서 감독 없이도 작업이 원활하게 진행되고 생산이 계속됩니다.

유연성, 소재 및 색상

플라스틱 성형 부품을 제작할 때는 프로젝트에 적합한 색상과 소재를 선택하는 것이 중요합니다. 이 두 가지의 범위가 넓기 때문에 기회는 거의 무한합니다. 폴리머의 발전으로 다양한 종류의 수지를 선택할 수 있게 되었습니다.

다양한 레진 및 용도에 대한 경험이 있는 사출 성형업체와 함께 작업하는 것이 중요합니다. 여기에는 RoHS, FDA, NSF 및 REACH 표준을 충족하는 수지가 포함됩니다.

프로젝트에 가장 적합한 레진을 선택하려면 몇 가지 중요한 요소를 고려하세요. 여기에는 인장 강도, 충격 강도, 유연성, 보온성, 수분 흡수성 등이 포함됩니다.

귀사에 가장 적합한 자료가 무엇인지 잘 모르겠다면 플라스틱 몰드에서 확인할 수 있습니다. 사출 성형 재료. 이메일(info@plasticmold.net)로도 쉽게 문의하실 수 있습니다.

아크릴 몰드

플라스틱 몰드 기술의 단점은 무엇인가요?

다음은 몇 가지 단점입니다. 플라스틱 몰드 기술:

높은 초기 투자 비용

빠른 생산이 가능한 사출 성형에는 사출 성형기가 필요합니다, 사출 플라스틱 금형사출 성형 장비, 기타 보조 장비 등입니다.

사출 성형기 및 금형 비용이 높습니다. 따라서 큰 투자가 필요합니다. 따라서 소량 배치에는 적합하지 않습니다.

높은 설계 요구 사항

부품을 대량으로 생산하려면 처음부터 설계가 올바른지 확인하세요. 나중에 디자인 문제로 인해 금형을 교체해야 하는 경우 비용이 매우 많이 듭니다.

높은 기술 요구 사항: 몰드 아이템 제작은 여러 요인에 따라 달라집니다. 이는 필요한 기술력이 더 높고 배우기 어렵다는 것을 의미합니다.

사출 성형기 작업자에게는 많은 기술이 필요합니다. 보통 5~10년의 경력이 필요합니다.

플라스틱 사출 금형 설계 및 생산 작업자는 더 많은 기술력이 필요합니다. 보통 5~10년의 경력이 필요합니다.

사전 제작 리드 타임이 길어지면 시간이 많이 소요됩니다.

사출 성형의 주요 장비는 금형입니다. 그러나 금형을 설계하는 데는 오랜 시간이 걸립니다. 다양한 도구 제작 방법과 금형 테스트도 생산 속도를 늦춥니다.

제품 아이디어의 구조와 크기에 따라 일반적으로 25~40일 정도 소요됩니다. 사출 금형.

일단 플라스틱 사출 금형 가 준비되면 사출 성형기 설정을 조정하는 데 여러 번 시도해야 하는 경우가 많습니다. 이 과정은 동일 제작 단계에서 이루어집니다. 목표는 빠른 생산을 위한 최적의 설정을 찾는 것입니다. 그러나 이 역시 시간이 필요합니다.

PMMA 사출 성형

플라스틱 몰드는 언제 필요합니까?

실생활에 사용하거나 시장에 판매하려는 플라스틱 제품 디자인이 있는 경우 다음을 사용하는 것이 좋습니다. 플라스틱 사출 금형 기술. 여러분이 놓치고 있을 수 있는 훌륭한 제조 옵션을 제공합니다. 정확성, 금속 대신 플라스틱 사용 또는 비용에 대해 걱정하는 경우라면 이 목록이 도움이 될 수 있습니다. 귀사의 제품에 플라스틱 사출성형을 다시 한 번 고려해 보시기 바랍니다.

부품 표준 및 정확도

플라스틱 사출 성형 부품 는 필요에 따라 높은 품질과 정확도를 가질 수 있습니다. 미국 내 제조업체를 사용할 경우 정확도는 일반적으로 0.001인치 이내입니다. ISO 인증과 같은 표준 관리 조치를 통해 부품의 높은 품질과 정확성을 보장합니다. 그러나 가격은 중국보다 높을 것입니다.

생산량

일단 플라스틱용 금형 제작 부품이 만들어지면 필요에 따라 생산량을 늘리거나 줄일 수 있습니다.

플라스틱 부품당 비용

사출 금형의 기본 비용을 제외하면 부품당 비용은 매우 낮습니다. 올바른 수지를 선택하면 비용에 영향을 미칩니다. 그러나 기계 마모와 인건비는 낮습니다. 즉, 생산량이 많을 때 부품당 비용이 다른 제조 옵션보다 낮습니다.

부품의 복잡성

플라스틱과 플라스틱 사출 금형은 다른 많은 생산 사양보다 설계의 자유도가 높습니다. 숙련된 플라스틱 금형 회사 는 제작 후 작업이 덜 필요한 부품과 부품 세트를 만들 수 있습니다. 여기에는 매끄러운 마감부터 복잡한 디자인까지 모든 것이 포함됩니다.

동시 사출, 오버몰딩 및 더블샷

부품을 하나의 플라스틱으로 만들 필요가 없습니다. 이중 사출 성형 및 오버몰딩 를 사용하면 두 가지 유형의 플라스틱을 금형에 결합할 수 있습니다. 이러한 플라스틱은 경도 및 유연성과 같은 서로 다른 특성을 가질 수 있습니다.

공 사출 성형은 한 폴리머를 다른 폴리머의 코어로 사출할 수 있습니다. 이 방법을 사용하면 더 유연하고 경제적인 부품을 만들 수 있습니다.

이중 주입

시장별 자료 및 표준

플라스틱 성형 기술 는 오랫동안 사용되어 왔으며 다양한 시장을 충족하는 도구와 표준을 갖추고 있습니다. 예를 들어 의료용 부품을 만들고 추적성이 필요한 경우 다양한 옵션이 있습니다. 이러한 옵션은 모든 부품을 배치까지 추적할 수 있도록 도와줍니다.

사출 성형은 대부분의 플라스틱 생산에 사용되는 공정으로 다양한 비즈니스와 회사에서 매우 선호합니다. 그 이유는 매우 효율적이고 이 공정을 사용하여 제조된 모든 품목에 균일성을 제공하기 때문입니다.

최상의 결과를 얻으려면 전문 사출 금형 생산업체와 협력하는 것이 가장 좋습니다. 이들은 고품질의 플라스틱 사출 성형 서비스를 제공합니다.

이 공정에서는 제품이 높은 기준을 충족하도록 전문 지식을 활용해야 합니다. 금형 공급업체는 가장 적합한 재료를 선택해야 합니다. 또한 제대로 작동하는 금형 설계. 마지막으로 생산 프로세스를 시작하기 위해 작동하는 프로토타입을 만들어야 합니다.

최고의 플라스틱 금형 회사는 어디에서 찾을 수 있나요?

Sincere Tech는 상위 10위 중 하나입니다. 중국의 금형 제조업체. 당사는 전 세계에 맞춤형 플라스틱 사출 금형 및 성형 서비스를 제공합니다. 당사의 서비스를 통해 플라스틱 금형 제조 및 생산에 40%를 절약 할 수 있습니다. 우리는 플라스틱 사출 금형 제조 서비스 분야에서 18 년 이상의 경험과 유창한 기술 영어 의사 소통을 보유하고 있습니다..

100%는 귀하의 프로젝트가 성공할 것을 보장합니다. 당사의 품질, 가격 및 서비스에 감동하고 만족하실 것입니다. 저희의 품질과 서비스를 직접 확인하실 수 있도록 일부 고객 사례를 공유해드리겠습니다. 견적을 위해 요구 사항을 보내 주시면 경쟁력 있는 가격 외에는 아무것도 잃지 않을 것입니다.

프로젝트 복사를 방지하기 위해 다음과 같이 서명할 수 있습니다. NDA 문서를 참조하세요. 다음에서는 플라스틱 사출 성형 공정, 기술, 전문 성형 기술, 결함 및 문제 해결 솔루션에 대한 정보를 확인할 수 있습니다.

플라스틱 몰드 기술

플라스틱 몰드 구조

기본적으로 두 가지 주요 부분이 있습니다. 플라스틱 사출 금형 구조: 몰드 캐비티(고정 절반)와 몰드 코어(이동 절반).

그리고 몰드 캐비티 (고정 절반)은 생성되는 플라스틱 부품의 외부 모양 또는 윤곽을 형성하는 금형 부품입니다. 공급 시스템도 이 지점에 위치합니다.

금형의 이 부분은 부품의 전체 크기와 모양을 정의하도록 설계되었습니다. 성형할 부품의 반대쪽 인상을 만들어서 만들어집니다. 여기에는 고정밀 CNC 기계, 와이어 절단, 전극 방전 가공 및 기타 가공 방법이 사용됩니다.

반면에 사출 금형 코어 (움직이는 절반) 측면은 생성되는 플라스틱 부품의 내부 특징과 모양을 형성합니다. 보스, 구멍, 리브 및 기타 사양과 같은 부품의 내부 지오메트리를 생성합니다.

그리고 몰드 코어 는 부품의 역인상을 사용하여 제작됩니다. 이는 고정밀 CNC 가공, 와이어 절단 및 전극 가공을 통해 이루어집니다. 다른 가공 공정도 사용됩니다.

의 두 부분 플라스틱 사출 몰d, 즉 캐비티와 코어가 몰드 베이스에 함께 배치됩니다. 이 몰드 베이스에는 냉각 채널, 이젝터 핀, 가이딩 부싱, 러너, 스퍼 부싱, 고정 나사 및 기타 메커니즘이 있습니다. 이러한 메커니즘에는 리프터, 슬라이더 및 기타 특수 동작이 포함됩니다.

자료는 플라스틱 몰드 구조는 여러 요인에 따라 달라집니다. 여기에는 플라스틱의 종류, 금형의 수명, 예산 등이 포함됩니다. 일반적으로 몰드 베이스는 S50 C로 제작되며, 간혹 A 및 B 플레이트는 1.2311로 제작되기도 합니다. 몰드 캐비티 및 코어에 사용되는 일반 강재는 P20, 1.2738H, S136H, NAK80, 1.3444, 1.3443, H13 등입니다.

플라스틱 사출 성형에는 높은 정밀도와 정확성이 필요합니다. 금형 구조는 고품질 완제품을 만들기 위한 핵심 요소입니다.

전반적으로, 플라스틱 몰드 는 다양한 몰드 플레이트, 인서트, 블록, 슬라이더, 리프터 및 기타 금속 부품으로 만들어집니다. A 플라스틱 사출 금형 는 캐비티 쪽이라고 하는 고정된 절반과 코어 쪽이라고 하는 이젝터 절반의 두 가지 주요 부품으로 구성됩니다. 이러한 부품에는 여러 개의 몰드 플레이트와 인서트가 포함됩니다.

캐비티는 주변 프레임 플레이트(A/B 플레이트)에 맞는 인서트를 사용하여 만들어집니다. 따라서 가공과 교체가 더 쉬워집니다.

플라스틱 몰드

플라스틱 금형 사출

그리고 플라스틱 사출 금형 캐비티 및 코어 인서트는 일반적으로 별도의 블록입니다. 이러한 블록 중 일부는 튼튼한 재질로 만들어집니다. 이들은 포켓 플레이트에 삽입됩니다. 이 포켓 플레이트는 A 및 B 플레이트로 가공됩니다. A 및 B 플레이트는 캐비티 또는 코어 리테이너 플레이트라고도 합니다.

몰드 캐비티와 코어 인서트는 포켓 플레이트에 있습니다. 이들은 A/B 플레이트 위에 약 0.1~0.5m 정도 위치합니다. 고정부와 이동부가 모두 닫히면 A와 B 플레이트 사이에 작은 공간을 남겨둡니다. 이렇게 하면 캐비티와 코어 인서트가 잘 맞습니다.

몰드 고정 절반에는 (캐비티 쪽)이 포함됩니다:

a: 로케이팅 링; b: 기본 플레이트(상판); c: 가이드 핀; d: 단열 플레이트(더 높은 금형 온도 또는 핫 러너 금형용); e: 고정 나사; f: 프레임 플레이트 또는 A 플레이트(솔리드로 제작된 경우 캐비티); 아래 그림 참조

하프 캐비티 쪽 고정

하프 캐비티 쪽 고정

플라스틱 몰드 배출 반쪽 포함(이동 반쪽/코어 쪽):

A: 가이드 부싱, B: 로케이팅 부싱, C: 서포트 바, D: 하단 플레이트, E: 프레임 플레이트 또는 B 플레이트(솔리드로 제작된 경우 코어), F: 지지 플레이트, G: 지지 바, H: 상단 이젝터 플레이트, I: 하단 이젝터 플레이트.

하프코어 측면 이동

하프코어 측면 이동

플라스틱 몰드 재료

알루미늄, 강철, 황동, 구리 등 사출 플라스틱 금형을 만드는 데 사용할 수 있는 금형 강재에는 여러 종류가 있습니다. 아래 재료는 플라스틱 몰드 제작에 사용되는 일반적인 몰드 재료 중 일부입니다.

기본 강철, 제작에 사용 플라스틱 몰드:

  1. P20 (1.2311): HRC 33-38의 다용도 저합금 금형강으로, 중저용량 사출 금형에 많이 사용됩니다. 이 강재는 인성과 가공성이 우수합니다. A 및 B 플레이트와 이젝터 플레이트로도 사용되기도 합니다.
  2. H13(1.2344, 1.2343) 또는 S136: 이들은 우수한 내열강으로, 일반적으로 사출 금형에 사용됩니다. 대량 생산에 필요하며 1백만 회 이상의 사출을 견뎌야 합니다. 고품질 캐비티 및 코어 요구 사항에 사용되는 매우 견고하고 경도가 낮은 강철입니다. 이 강재의 경도는 HRC 48~60도까지 경화할 수 있습니다.
  3. 303 스테인리스 스틸: 이 소재는 내식성과 가공성이 뛰어난 것으로 알려져 있습니다. 덜 까다로운 애플리케이션에 사용되는 금형에 적합합니다.
    420 스테인리스 스틸: 이 유형의 강철은 303 스테인리스 스틸보다 더 단단하고 내마모성이 뛰어납니다. 마모가 문제가 되는 금형에 사용됩니다.
  4. 알루미늄 합금: 일부 알루미늄 합금은 가볍고 열전도율이 우수하기 때문에 프로토타입 금형에 사용됩니다. 일반적으로 사용되는 알루미늄 합금은 7075와 6061입니다.
  5. 베릴륨 구리 합금: C17200 및 MoldMAX와 같은 합금은 높은 열전도율과 우수한 내식성을 나타냅니다. 특히 냉각 채널을 추가할 수 없거나 성형 중 냉각이 쉽지 않은 일부 깊은 리브의 경우와 같이 빠른 열 제거가 필요한 금형에 사용됩니다.
  6. 718H(1.2738H) 및 2738HH: 경도가 HRC 28-40인 사전 경화강으로, 경도가 적당히 높고 가공성이 우수합니다. 주로 캐비티와 코어, 스트리퍼 플레이트에 사용됩니다. 이 강재의 금형 수명은 약 50만 회 이상입니다.

강철을 선택할 때 플라스틱 몰드어떤 재료를 사용해야 하는지 궁금할 수 있습니다. 그런 다음 성형할 플라스틱 소재의 유형, 예상 생산량, 필요한 금형 수명 및 비용 고려 사항과 같은 몇 가지 요소를 고려해야 합니다. 또한 표면 마감도 올바른 금형 재료를 선택하는 데 중요한 요소입니다. 플라스틱 금형이 필요한 프로젝트가 있다면 경쟁력 있는 가격으로 신속하고 정확하게 문제를 해결할 수 있는 중국의 전문 금형 제조업체를 찾아보세요.

플라스틱 성형 기술이란?

플라스틱 성형 기술 액체 플라스틱을 금형이나 다이 캐비티에 부어 원하는 모양으로 굳히는 공정입니다. 이러한 플라스틱 금형은 다양한 용도로 사용할 수 있으며, 수백만 개의 균일한 모양의 플라스틱 제품을 생산할 수 있는 비용 효율적인 공정입니다.

일반적으로 금형에는 압축 성형, 압출 성형, 사출 성형, 블로우 성형, 회전 성형의 다섯 가지 유형이 있습니다. 이러한 각 기술과 관련된 세부 사항을 살펴보고 어떤 기술을 사용하는 것이 가장 성공적인지 결정할 수 있습니다.

사출 성형 서비스

압출 성형

압출 성형에서는 따뜻하게 녹인 플라스틱을 모양의 구멍을 통해 눌러서 길고 모양이 있는 플라스틱 부품을 만듭니다. 액체 플라스틱이 압착되는 이 맞춤형 모양을 다이라고 합니다. 이 다이는 원하는 특정 결과를 위해 맞춤 제작됩니다. 마치 프레스로 반죽을 눌러 쿠키 모양의 쿠키를 만드는 것과 비슷합니다.

압축 성형

이 기술은 액체 플라스틱을 예열된 금형에 부은 다음 압축하여 원하는 모양을 만드는 것입니다. 전체 공정의 높은 온도로 인해 최종 제품의 강도가 가장 우수합니다. 이 공정은 액체 플라스틱을 식혀서 잘려서 금형에서 제거되지 않도록 하는 것으로 마무리됩니다.

블로우 몰딩

블로우 몰딩을 통해 맞춤형 플라스틱 부품은 벽이 얇고 속이 비어 있는 형태로 제작됩니다. 이 기술은 플라스틱 부품의 벽 두께가 균일해야 하는 경우에 적합합니다. 이는 유리 블로잉 공정과 매우 유사합니다.

사출 성형

사출 성형 사출 성형은 압출 성형과 매우 유사합니다. 차이점은 사출 성형의 경우 녹은 플라스틱을 맞춤형 금형에 바로 주입한다는 점입니다. 사출은 고압으로 이루어지므로 금형이 강력한 힘으로 포장됩니다. 다른 기술과 마찬가지로 금형이 포장된 후 플라스틱을 식혀서 새로운 모양을 유지한 다음 금형을 열고 이젝터 시스템을 사용하여 부품을 금형 캐비티 밖으로 배출한 다음 다음 사이클을 계속 진행합니다.

회전 성형

로토몰딩이라고도 하는 이 기술은 액체 또는 수지를 금형 내부에 넣은 다음 고속으로 회전하는 방식입니다. 그러면 액체가 금형의 전체 표면을 고르게 덮어 모든 벽이 고르게 두꺼운 속이 빈 부품을 만듭니다. 금형이 냉각되고 액체 플라스틱이 새로운 형태를 갖추면 금형에서 꺼내집니다.

플라스틱 사출 금형의 미래

플라스틱 부품 제조 산업은 최신 아이디어와 공정 덕분에 계속 성장하고 있습니다. 이러한 창의적인 플라스틱 사출 성형 기술은 제조업체와 기업에 플라스틱 부품을 대량 생산할 수 있는 새로운 방법을 제공합니다. 비즈니스에 도움이 되고 생산 효율을 높일 수 있는 플라스틱 사출 성형의 새로운 혁신 기술을 소개합니다.

마이크로 사출 성형

기술이 발전함에 따라 장비와 기기는 보관과 취급이 용이하도록 점점 더 작아지고 있습니다. 많은 기업과 산업에서 매년 더 컴팩트한 크기의 새로운 디자인을 개발하여 혁신을 거듭하고 있습니다. 작은 플라스틱은 많은 분야에서 유명하며, 마이크로 사출 성형은 이러한 요구를 충족하는 가장 좋은 방법입니다.

휴대폰 및 컴퓨터 산업은 최신 휴대폰과 컴퓨터 기기에 더 작은 플라스틱 금형을 사용하기 때문에 마이크로 사출 성형의 이점을 누릴 수 있습니다. 의료 분야에서도 휴대용 정맥주사 펌프와 같은 환자를 위한 소형 의료 기기를 사용합니다.

사출 트랜스퍼 성형

트랜스퍼 몰딩 공정은 유사한 사출 성형품을 동시에 만드는 공정입니다. 사출 트랜스퍼 성형은 일반적인 사출 성형 공정과 플런저를 사용하여 수지를 두 개 이상의 금형에 압착함으로써 한 단계 더 발전한 방식입니다.

금형이 동시에 냉각되고 배출되어 생산 속도가 빨라집니다. 이 프로세스는 플라스틱 튜브 플러그와 같은 다양한 성형품에 걸쳐 균일한 모양을 만들 수 있다는 추가적인 이점을 제공합니다.

구조용 폼 몰딩

사출 성형의 큰 혁신은 구조적 발포 성형입니다. 이 공정은 질소와 같은 기체와 플라스틱 수지로 구성된 폼을 생성하여 사출 성형과 가스 보조 사출 성형을 결합한 것입니다. 이 조합은 사출 시 폼으로 변하여 팽창합니다. 그 결과 폼 내부와 단단한 플라스틱 소재의 외피가 만들어집니다.

이 폼 조합을 사용하면 단단한 모양을 더 쉽게 만들고 금형의 작은 부분까지 도달할 수 있습니다. 또한 강력한 플라스틱을 만들 수 있습니다. 플라스틱의 내부는 속이 비어 있고 외부는 금형에 따라 강력하고 섬세하게 표현됩니다.

가스 보조 사출 성형

특정 사출 금형은 디자인이 딱딱하고 채울 공간이 거의 없습니다. 이러한 작은 공간은 수지가 닿지 않을 수 있기 때문에 전체 플라스틱 조각을 성형하기 어렵게 만듭니다. 가스 보조 사출 성형 는 수지가 냉각되는 동안 유체에 가압 가스를 주입하여 수지가 금형의 작은 부분까지 도달하도록 합니다.

냉각이 완료되면 가스가 방출되고 부품이 금형에서 배출됩니다. 이 혁신적인 플라스틱 사출 성형은 가스로 인해 플라스틱 표면이 팽창하기 때문에 단단한 플라스틱 부품을 만들고 플라스틱 표면을 강력하게 만드는 놀라운 방법입니다.

폴리프로필렌 사출 성형 공장

플라스틱 성형 기술에 사용되는 재료의 종류

플라스틱 사출 성형은 다양한 플라스틱 재료와 호환되므로 모든 산업 및 가정에서 흔히 볼 수 있는 제품입니다. 한 글에서 모든 제품을 다루는 것은 사실상 불가능합니다. 가장 유명한 제품들을 엄선했습니다.

아크릴(PMMA)

아크릴로 더 잘 알려진 Poly는 열가소성 소재로, 기계적 강도가 완벽하고 가벼우며 투명하고 투명한 외관을 가집니다. 연성은 없지만 파손에 대한 저항력이 가장 뛰어납니다.

또한 가장 큰 강점 중 하나는 기계 가공이 쉽다는 점입니다. 사출 성형 후 아크릴 부품은 마감 및 변경이 용이합니다. PMMA 사출 성형 를 클릭해 자세히 알아보세요.

PMMA에는 몇 가지 주목할 만한 문제가 있습니다. 첫째, 긁힘이 발생하기 쉬우며 이는 투명도뿐만 아니라 전체적인 외관에도 영향을 미칩니다. 또한 PMMA는 그리스와 오일을 축적하는 경향이 있어 표면과 투명도 특성에 영향을 미칩니다. 마지막으로 고온 조건에서 성능이 저하됩니다.

아크릴 사출 성형

아크릴로니트릴 부타디엔 스티렌(ABS)

ABS는 가장 유명한 사출 성형 재료 중 하나입니다. 최고의 인성과 강도, 내화학성, 내충격성, 오일 및 염기를 가지고 있습니다. 완전 불투명하며 다양한 색상으로 사출 성형할 수 있습니다. 게다가 ABS는 이 목록의 다른 플라스틱 사출 성형 재료에 비해 매우 저렴합니다. 자세히 알아보기 ABS 사출 성형.

ABS 소재란?

ABS 플라스틱

폴리카보네이트(PC)

PC는 뛰어난 인성, 내충격성, 비산 방지 기능을 갖추고 있습니다. 투명한 외관을 가지고 있습니다. 또한 기계적 특성을 유지하고 넓은 온도 범위를 찾는 바람직한 표준을 가지고 있습니다. 따라서 고온의 환경에서도 잘 작동합니다.

광학 선명도가 유리보다 뛰어난 경우가 많습니다. 이 때문에 헬멧 바이저, 고글, 보호용 기계 쉴드를 생산하는 데 매우 유명한 사출 성형 재료입니다. 자세히 알아보기 폴리카보네이트 사출 성형.

PC 사출 성형

폴리스티렌(PS)

PS는 매우 유명한 몇 안 되는 사출 성형 재료 중 하나입니다. 놀랍도록 가볍고 화학 반응이 잘 일어나며 습기에 강하고 금형 내부에서 균일한 열 수축이 일어나기 때문에 사출 성형에 매우 완벽합니다.

PS는 가전제품, 장난감, 용기 등의 제품을 만드는 데 사용됩니다. 또한 의료 장비 멸균의 초기 기술인 감마선으로도 성능이 저하되지 않아 의료 장비 산업에서 독보적인 위치를 차지하고 있습니다. 따라서 배양 키트 및 페트리 접시와 같은 장비는 PS로 사출 성형됩니다. 자세히 알아보기 PS 사출 성형.

열가소성 엘라스토머(TPE)

TPE는 플라스틱과 고무가 혼합된 소재라는 점에서 사출 성형 소재 중 단연 돋보입니다. 두 소재의 장점을 모두 갖추고 있습니다. 유연하고 튼튼하고 긴 길이로 늘릴 수 있으며 재활용이 가능합니다.

또한 대부분의 고무 대체재 중에서 가격이 저렴하다는 것도 큰 장점입니다. 자세히 알아보기 TPE 사출 성형.

어쨌든 소재의 일부 특성을 잃기 때문에 고온에서 사용하기에는 적합하지 않습니다. 또한 크리프가 발생하기 쉬우므로 너무 오랫동안 너무 많이 늘려서는 안 됩니다.

TPE 사출 성형

비용은 얼마입니까? 플라스틱 몰드 플라스틱 사출 성형 제품?

비용 사출 플라스틱 금형사출 성형 비용 제품은 금형의 크기와 복잡성, 사용되는 플라스틱의 종류, 생산량, 생산 리드 타임 등 여러 요인에 따라 크게 달라질 수 있습니다.

이러한 요소와 마감, 포장 및 배송에 대한 추가 비용은 완성된 플라스틱 사출 성형 제품의 가격에 영향을 미칩니다. 생산을 시작하기 전에 제조업체와 긴밀히 협력하여 관련된 모든 비용을 파악하고 명확한 견적을 받는 것이 중요합니다.

아래에서 금형 공급업체로부터 플라스틱 금형 가격 및 플라스틱 성형 가격을 받는 방법에 대한 몇 가지 가이드를 제공합니다.

1. 수출용 플라스틱 몰드 또는 툴링의 가격은 어떻게 알 수 있나요?

내보내기란 무엇인가요? 플라스틱 몰드? 즉, 금형만 구매하고 금형이 완전히 완성되어 대량 생산할 준비가 되면 해당 국가 또는 지정된 제조업체로 금형을 가져가 부품을 성형합니다.

수출 가격을 확인하려면 사출 플라스틱 금형, 금형 공급업체에 제공해야 할 몇 가지 사항이 있습니다. 제조업체가 가격을 정확하게 확인하는 데 필요한 모든 정보를 제공했는지 확인하기 위해 다음은 금형 가격 견적에 대한 몇 가지 핵심 사항입니다. 이는 수출용 금형에 가장 중요한 정보입니다.

  • 우선를 클릭하고 3D 도면(STP 또는 IGS 형식이 더 좋음)을 금형 공급업체에 보내세요. 도면이 없는 경우에는 대략적인 부품 크기가 표시된 샘플 사진을 준비하여 공급업체에 부품 구조를 보여 주어야 합니다.
  • 둘째예를 들어, 필요한 금형 샷 수를 알아야 합니다. 평생 50만 샷 또는 평생 100만 샷이 필요한 경우 두 가지 요구 사항에 따라 가격이 달라질 수 있습니다.
  • 셋째. 캐비티 수: 몰드에 필요한 캐비티 수를 지정해야 합니다. 하나의 캐비티와 여러 개의 캐비티는 가격이 완전히 다르기 때문에 단일 캐비티가 다중 캐비티 몰드보다 저렴합니다. 이는 금형 가격에도 영향을 미치므로 확실하지 않은 경우 공급업체에 몇 가지 제안을 요청할 수 있습니다.
  • 포스. 금형에 필요한 것이 콜드 러너인가요, 핫 러너인가요? 핫 러너라면 어떤 브랜드의 핫 러너인가요? YUDO, INCOE 등 모든 정보에 따라 가격이 다르므로 요구 사항을 구체적으로 명시해야 합니다. 금형 공급업체에 몇 가지 제안을 요청할 수도 있습니다.

위의 항목은 매우 중요한 정보입니다. 툴링 비용 모든 정보에 따라 금형 가격이 변경되므로 수출 금형에 대한 정보를 입력해야 합니다. 지원이 필요하면 언제든지 문의해 주세요.

플라스틱 사출 금형

2. 사출 성형 제품의 가격 책정 방법

다음 사항만 필요한 경우 플라스틱 성형 부품를 선택하면 플라스틱의 종류, 한 번에 필요한 부품 수, 표면 요구 사항, 부품 색상만 알려주면 나머지는 플라스틱 성형 회사에서 알아서 처리해 줍니다.

를 얻으려면 플라스틱 사출 성형 제품의 비용, 수출 비용을 얻는 것보다 훨씬 쉽습니다. 플라스틱 몰드. 아래와 같은 간단한 단계를 통해 플라스틱 사출 성형 서비스 가격을 쉽게 확인할 수 있습니다.

  • 플라스틱은 무엇인가요? 예를 들어 PP, PA66, ABS, PC, PMMA, PC/ABS, PEEK, PPS 등입니다.
  • 몰딩 부품에 어떤 색상이 필요하나요? 다양한 색상이 있으므로 팬톤 색상에서 색상을 참조할 수 있습니다.
  • 부품 표면 요구 사항은 무엇인가요? 텍스처(그레인 또는 무광택) 또는 고광택? 텍스처 코드는 VDI 3400의 레퍼런스를 사용할 수 있습니다.
  • 3D 부품 설계(STP 또는 IGS 형식 파일이 모든 회사에 적합합니다); 3D 부품 설계가 없는 경우 부품 크기와 부품 무게가 포함된 샘플 사진 또는 아이디어 사진을 보내 주시고 설명해 주시면 가격을 책정해 드릴 수 있습니다.
  • 한 번에 몇 개의 부품이 필요한가요?
  • 특별한 기능 요구 사항이 있나요?

위의 정보를 통해 매우 경쟁력 있는 현지 금형/공구 비용(타사 대비 최소 40% 저렴)과 단위 사출 성형 비용을 당사 측으로부터 얻을 수 있습니다. 이 정보는 플라스틱 견적에 중요한 요소입니다. 사출 성형 비용. 그렇지 않으면 어떤 가격에도 참조가 없습니다.

플라스틱 금형, 성형 결함 및 문제 해결

품질은 플라스틱 몰드 는 성형 공정만큼이나 중요합니다. 제품 제작을 위해 선택한 플라스틱 성형 업체는 결국 일반적인 성형 문제를 해결해야 합니다. 고품질 플라스틱 금형과 우수한 플라스틱 사출 성형 공정을 갖추고 있다면 최종 제품에서 기대하는 종류의 결과를 얻을 수 있습니다.

성형 결함은 플라스틱 금형에 나타나며, 이는 플라스틱 금형에 사용되는 원료의 유형에 기인할 수 있습니다. 플라스틱 사출 성형 프로세스의 품질뿐만 아니라 플라스틱 금형사출 성형 공정 기술, 사출 성형기 등입니다.

다행히도 사출 성형 결함을 처리하고 방지하고 이러한 접근 방식을 사용하여 금형 제조업체는 고품질 사출 플라스틱 금형을 만들 수 있습니다. 고품질 금형을 만들면 다른 모든 문제는 쉽게 해결할 수 있습니다.

고품질을 만들려면 플라스틱 몰드이 성형 문제를 해결하는 방법을 알아야 합니다. 물론 좋은 금형 공급 업체를 찾으면 실제로이 문제를 해결할 수 있습니다. 블로우는 다음과 같은 일반적인 성형 결함을 해결하기위한 몇 가지 문제 해결 팁입니다. 용접 라인, 등을 통해 궁극적으로 고품질의 성형 부품을 얻을 수 있습니다. 금형 제조 및 성형 과정에서 가장 많이 발생하는 몇 가지 주요 결함이 있습니다.

흐름 표시

흐름 표시

1. 흐름 표시

이 성형 결함은 일반적으로 게이트 영역과 조인트 영역(조인트 라인 또는 용접 라인)라고 부르는 사람들도 있습니다. 흐름 라인부품의 좁은 부분에서 흔히 발생하며 부품 벽 두께와 예상 용도에 따라 경미하거나 심각한 결함으로 간주될 수 있습니다.

외관 흐름선 결함을 해결하기 위해 성형 공정 중에 성형 공정에서 사출 속도 압력, 용융 재료 온도 및 금형 온도. 게이트 크기를 늘리거나 게이트의 위치를 변경하는 것도 도움이 됩니다(마지막 옵션). 플로우 마크 결함의 오른쪽 그림 아래에서 게이트 크기를 늘려 개선했습니다. 흐름 표시 벽 두께가 너무 두껍기 때문입니다(7mm).

흐릿한 영역

흐릿한 영역

2. 흐릿한 영역

가장 흔한 것은 후광과 같은 스프 루 주위에 나타날 수 있는 둔한 동심원 고리입니다. 이는 일반적으로 재료 흐름이 좋지 않고 점도가 높을 때 발생합니다. 많은 사람들이 생각하는 것과는 달리 이것은 포장 결함이 아니라 청구 주기 초기에 발생하는 결함입니다.
가능성을 최소화하려면 주입 속도 프로파일을 조정하여 주입 단계 전체에 걸쳐 균일한 흐름 전면 속도를 보장해야 합니다.

스크류의 배압과 배럴 온도를 높여 낮은 용융 온도로 인한 둔한 표면을 줄이는 것도 도움이 됩니다. 금형 온도를 높이는 것도 이 문제를 줄일 수 있습니다. 그러나 공급 영역에 냉각 시스템이 있어야 하며, 특히 핫 러너 시스템인 경우 그렇지 않으면 이 문제를 해결하기가 쉽지 않습니다. 설계 관련 문제로 인해 발생하는 둔한 표면의 경우, 부품과 게이트 사이의 반경을 줄임으로써 이 문제를 개선할 수 있습니다.

3. 번즈 마크 결함

화상 자국은 다음에서 자주 볼 수 있는 결함입니다. 플라스틱 사출 성형 부품 연한 노란색 또는 검은색 변색처럼 보입니다. 이는 과도한 용융 온도, 갇힌 공기로 인한 과열, 과도한 사출 속도로 인한 사소한 결함일 수 있습니다.

화상 자국

화상 자국

이 유형에 대한 시정 조치 번 마크 발행: 온도 감소, 사이클 시간 단축, 사출 속도 감소를 포함합니다. 플라스틱 몰드 제조업체는 또한 이 결함을 유발하는 갇힌 공기 문제를 해결하기 위해 적절한 게이트 크기와 가스 배출구 장갑을 갖추고 있는지 확인해야 합니다.

에어 트랩 문제는 이러한 번 마크 문제의 가장 일반적인 원인이며 성형 공정을 조정하여 완전히 해결할 수 없기 때문에 결함을 표시하려면 통풍구를 늘리거나 깊은 리브에 통풍 인서트를 추가하는 등 통풍을 추가하는 것이 가장 좋은 해결책입니다.

4. 광택 차이 결함

텍스처 표면의 광택 차이가 더 두드러지는 경향이 있으며 표면 텍스처가 균일하더라도 부품의 광택이 불규칙하게 나타날 수 있습니다. 이는 일부 영역에서 금형 표면의 복제가 불충분할 때 발생하는 문제이며, 때로는 코어 쪽에 리브가 많아 텍스처 표면의 광택 변화 문제를 증가시킬 수 있습니다.

용융 온도, 금형 온도 또는 유지 압력을 높여서 보정할 수 있습니다. 유지 시간이 길수록 금형 표면이 정확하게 복제될 가능성이 높아집니다. 리브의 디자인이 이 문제를 일으킨 경우, 이 문제를 개선하기 위해 모든 리브에 반경을 추가할 수 있습니다. 이렇게 하면 내부 응력이 감소하여 텍스처 표면도 개선될 수 있습니다.

5. 뒤틀림 결함(변형) 

플라스틱 성형 부품에는 정상적인 뒤틀림 결함이 있으며, 특히 긴 크기의 성형 부품은 뒤틀림 결함을 해결하기가 어렵습니다. 금형 설계를 개선하는 것이 평균적인 해결책이지만 성형기의 파라미터를 조정하여 이 문제를 해결하는 데는 매우 제한적입니다. 뒤틀림과 왜곡을 개선하는 이유와 해결책은 다음과 같습니다.

변형 문제

변형 문제

  • 성형 공정의 잔류 응력으로 인해 변형이 발생하면 사출 압력을 낮추고 금형 온도를 높여 개선할 수 있습니다.
  • 부품 고착으로 인한 변형이 이 문제를 해결하기 위해 배출 시스템을 개선하거나 드래프트 각도를 더 추가할 수 있습니다.
  • 냉각 채널이 불량하거나 냉각 시간이 부족하여 뒤틀림 결함이 발생하는 경우 냉각 채널을 더 추가하고 냉각 시간을 늘려 개선할 수 있습니다. 예를 들어 변형 영역에 냉각수를 더 추가하여 뒤틀림 결함을 개선하거나 캐비티와 코어에 다른 금형 온도를 사용할 수 있습니다.
  • 왜곡 문제로 인해 부품 수축이 발생한 경우 이를 해결하려면 다음을 수행합니다. 뒤틀림 결함, 우리는 금형 설계를 조정해야 합니다. 성형 부품에서 변형 크기를 측정하고 부품에 대한 사전 변형 설계를 수행해야 하는 경우도 있습니다. 수지는 수축률이 크며, 일반적으로 결정성 수지(예: POM, PA66, PP, PE, PET 등)는 비정질 수지(예: PMMA, 폴리염화비닐(PVC), 폴리스티렌(PS), ABS, AS 등)보다 휨률이 더 높습니다.
    때때로 광택 섬유 소재는 변형 문제가 더 많이 발생하기도 합니다. 이 문제를 완전히 해결하려면 부품 디자인을 두세 번 조정해야 할 수도 있기 때문에 가장 어려운 해결책이지만, 이 방법만이 왜곡 문제를 해결할 수 있는 유일한 방법입니다.

6. 쇼트 샷 결함

짧은 샷은 금형을 완전히 채우지 못했음을 의미합니다. 이 성형 결함은 일반적으로 충전 영역의 끝인 끝에서 발생합니다.

쇼트 샷 문제

쇼트 샷 결함. 벤팅 인서트를 추가한 후 결함이 완전히 해결되었습니다.

또는 얇은 벽면이 있습니다. 이 결함이 발생하는 몇 가지 이유는 다음과 같습니다.

  • 금형 온도가 너무 낮습니다. 금형이 너무 차가워서 금형 캐비티에 재료가 채워지면 액체 재료가 부품의 끝이나 더 깊은 리브까지 채워지지 않습니다. 금형 온도를 높이면 이 성형 문제를 해결할 수 있습니다.
  • 재료 온도가 너무 낮습니다. 이 문제도 숏샷 문제를 일으킬 수 있으며, 이는 낮은 금형 온도 문제와 유사한 이유입니다. 이 문제를 개선하기 위해 재료의 용융 온도를 높여 이 성형 결함을 해결할 수 있습니다.
  • 주입 속도가 너무 느립니다. 사출 속도는 충전 속도와 직접적인 관련이 있습니다. 사출 속도가 너무 낮으면 액체 재료 충전 속도가 매우 느려지고 느린 흐름의 재료는 식기 쉽습니다. 이로 인해 재료가 미리 차가워질 수 있습니다. 이 문제를 해결하기 위해 사출 속도, 사출 압력 및 유지 압력을 높일 수 있습니다.
  • 환기 문제. 이는 금형 시험 중에 발생하는 가장 일반적인 성형 결함이며, 다른 모든 결함은 성형 파라미터를 조정하여 해결할 수 있습니다. 통풍 문제로 인해 쇼트 샷 문제가 발생하는 경우 가장 좋은 해결책은 캐비티에서 공기를 방출하는 방법을 찾는 것입니다. 때때로 클램핑 력을 줄이면 조금 도움이 될 수 있지만 이러한 결함을 완전히 해결할 수는 없습니다.
    공기가 캐비티나 막다른 곳(예: 갈비뼈 끝)에 갇혀 있으면 해당 영역에서 숏샷 문제가 발생합니다. 이 문제를 해결하려면 파팅 라인의 통풍 홈을 늘리고 막다른 지점에 통풍 인서트를 추가하여 공기가 빠져나가도록 유도해야 합니다.

7. 싱크 마크: 금형 캐비티에서 불균형하게 수축하는 플라스틱 재료로 인해 성형된 부품에 생긴 싱크 마크입니다. 싱크 영역에 부품 형상과 일치하지 않는 재료가 부족한 것 같습니다. 이 문제는 벽면이 두껍거나 금형에 냉각 시스템이 부족할 때 발생합니다. 이 싱크 마크 문제가 발생하는 일반적인 이유는 부품 설계의 벽 두께가 고르지 않기 때문입니다.

  • 일부 리브 또는 일부 영역이 다른 곳보다 벽이 두꺼운 경우(리브 두께는 평균 벽의 최대 1/2-7/10 정도여야 함), 이 두꺼운 영역에 싱크 마크 문제가 발생하기 쉽습니다. 다음은 이 결함을 개선하기 위한 몇 가지 제안 사항입니다.7. 싱크 마크: 금형 캐비티에서 불균형하게 수축하는 플라스틱 재료로 인해 성형된 부품에 생긴 싱크 마크입니다. 싱크 영역에 부품 형상과 일치하지 않는 재료가 부족한 것 같습니다. 이 문제는 벽면이 두껍거나 금형에 냉각 시스템이 부족할 때 발생합니다. 이 싱크 마크 문제가 발생하는 일반적인 이유는 부품 설계의 벽 두께가 고르지 않기 때문입니다.
싱크 마크

싱크 마크

  • 두꺼운 벽에 가깝도록 게이트 위치를 변경합니다.
  • 유지 압력과 유지 시간을 더 추가하고 금형 캐비티에 더 많은 재료를 주입합니다. 이 방법을 사용할 때는 부품 치수가 여전히 허용 오차 요구 사항 내에 있는지 다시 확인해야 합니다.
  • 이 문제를 개선하려면 냉각 시간과 냉각 채널을 늘리세요. 플라스틱 수축률은 정상입니다. 냉각 시간이 너무 짧고 금형을 개봉한 후에도 부품이 여전히 따뜻하면 냉각 시스템 없이도 부품이 빠르게 수축합니다. 이렇게 하면 싱크 마크가 생기기 쉽습니다. 냉각 시간을 늘려서 플라스틱 사출 성형 부품을 금형 캐비티에서 완전히 냉각하면 이 결함이 해결됩니다.
  • 부품 디자인에 일부 리브 또는 보스의 벽이 매우 두꺼운 경우 이 문제를 해결하려면 부품 형상을 개선하고 두꺼운 영역에 인서트를 추가하여 벽 두께를 줄여야 합니다. 이 문제는 해결될 수 있습니다. 이 불균형 벽 문제는 소프트웨어를 사용하여 분석하고 사전에 방지할 수 있습니다. 금형 제작 전에 완전한 DFM 보고서를 작성하여 고객에게 보내 승인을 받습니다. 아래는 싱크 마크 분석 보고서 샘플입니다.

새 프로젝트 작업을 시작할 준비가 되셨나요? 플라스틱 몰딩 파사트? 그렇다면 시작하세요. 플라스틱 몰딩 프로젝트의 경우 신뢰할 수 있는 중국 곰팡이 회사가 더 중요합니다. 이렇게 하면 시장이 매우 빠르게 성장하고 적은 비용으로 프로젝트에서 더 많은 수익을 올릴 수 있기 때문입니다,

오늘날 80%가 넘는 대기업이 중국에서 상품을 조달하고 있습니다. 아이폰처럼 다른 유명 기업들도 중국에서 물건을 구매합니다. 그래서 무엇이 걱정되시나요? 준비가 되었다면 즉시 시장을 열고 수익을 공유하기 위해 속도를 높이세요.

SINCERE TECH는 다음 중 하나입니다. 중국 10대 플라스틱 사출 성형 기업 전 세계적으로 올인원 서비스를 제공하는 서비스에는 제품 개발 및 설계, 프로토 타입, 테스트, PCB 설계 및 납땜, 금형 / 다이캐스팅 설계 및 제조, 대량 생산, 표면 마감, 인증서, 조립, 최종 검사 및 포장, 우리는 제조 회사 및 완전한 제품 조립 설비를 갖추고 있습니다. 우리는 당신이 우리의 서비스와 품질에 100% 만족할 것을 보장합니다.

저희는 매우 전문적인 기술팀이 프로젝트를 매우 신중하게 처리하고 완벽한 플라스틱 몰드 부품을 제공합니다. 일부 고객은 현재 플라스틱 금형 공급업체가 저희만큼 전문적이지 않아서 문제 해결을 위해 금형을 저희 공장으로 옮겼습니다. 서비스, 품질 및 가격을 확인할 수 있도록 현재 고객 중 일부를 보내드릴 수 있습니다.

다음 주소로 이메일을 보내주세요. info@plasticmold.net 를 클릭하세요. 당사는 귀하의 디자인을 다른 사람과 절대 공유하지 않습니다. 프로젝트를 보호하기 위해 NDA를 기꺼이 체결할 수 있습니다.

2K 몰딩

오버몰딩과 2K 몰딩의 간략한 차이점 요약

주입 중 오버몰딩 와 2K 사출 성형(2샷 사출 성형이라고도 함)은 많은 유사점을 공유하지만 몇 가지 주요 차이점도 있습니다. 두 성형 공정의 차이점은 아래를 참조하세요.

사출 오버몰딩 는 일반 단일 노즐 사출 성형기를 사용하여 두 가지 다른 유형의 재료를 하나의 솔리드 부품으로 생산합니다. 그리고 오버몰딩 공정은 첫 번째 부품(기판 부품) 또는 금속 인서트(인서트 성형)를 후속 금형으로 이동하는 것을 의미합니다(오버몰드)을 클릭하여 최종 부품을 만듭니다. 오버몰드를 사용하여 도구 손잡이에 부드러운 촉감의 그립을 추가하거나 다양한 색상 또는 질감의 제품을 만들 수 있습니다.

2K 사출 성형멀티샷 사출 성형, 2샷 사출 성형 또는 이중 사출 성형이라고도 하는 2K 사출 성형은 특수 2K 사출 성형기를 사용하여 동일한 금형에 두세 가지 재료(색상)를 동시에 사출하는 방식입니다. 실제로 2K 성형기에는 실제로 두 개의 금형이 설치되어 있습니다. 오버몰딩과 달리 2K 사출 성형기는 두 재료를 동시에 사출하여 성형 공정이 완료되면 완전히 접착됩니다. 2K 성형 공정은 복잡하지만 속도와 효율성, 높은 품질이 특징입니다.

다음에 비해 오버몰딩 2K 사출 성형과 2K 사출 성형은 품질과 생산 효율성이 뛰어납니다. 하지만 2K 사출 성형기의 가격이 비싸다는 단점이 있습니다, 오버몰딩 이 때때로 대체품으로 사용됩니다. 반면에 오버몰딩 부품의 비용은 2K 사출 성형 부품보다 높습니다. 그러나 소량의 2색 성형 부품의 경우 사출 오버몰딩은 모든 표준 사출 성형기를 사용하여 오버몰딩 부품을 생산할 수 있습니다.

TPU 오버몰딩

둘 다 오버몰딩 및 2K 사출 성형 최종 제품의 요구 사항에 따라 고유 한 장단점이 있습니다. 오버몰딩 공정은 특정 부품만 생산할 수 있고, 2K 사출 성형 공정은 특정 부품만 성형할 수 있습니다. 두 성형 공정 모두 2가지 색상의 부품을 생산할 수 있는 경우 2K 성형 공정이 대량 생산에 가장 효과적입니다.

둘 다 오버몰딩 과 2K 사출 성형은 여러 재료 또는 레이어로 제품을 만드는 데 사용할 수 있지만 주요 차이점은 오버 몰딩에서는 두 재료를 개별적으로 성형하는 반면(두 번째 금형에 기판을 미리 로드) 2K 사출 성형에서는 두 재료를 동일한 공정에서 함께 성형한다는 것입니다(물론 특수 기계가 필요함).

오버몰딩(오버몰드)이란 무엇인가요?

오버몰딩 또는 오버몰드는 하나의 플라스틱을 다른 재료 위에 성형하여 합쳐서 하나의 최종 성형품을 만드는 성형 공정입니다. 플라스틱 오버몰딩 하나는 기판(첫 번째 금형)이고 두 번째 금형은 오버몰드라고 하며, 일반적으로 두 번째 금형에는 TPE 소재가 사용되지만 항상 그런 것은 아닙니다. 기판이 가공된 금속 또는 황동 부품인 경우 이러한 유형의 오버몰딩 를 일반적으로 인서트 몰딩이라고 하며, 인서트 몰딩은 오버몰딩 공정을 완료하는 데 하나의 몰드(오버몰드) 만 필요합니다.

플라스틱에 가장 일반적으로 사용되는 재료 오버 몰딩 열가소성 수지(TPE), 고무 또는 기판과 같은 재질이지만 색상이 다른 재질입니다. 오늘은 주로 오버몰딩 기술 다양한 산업 분야에서 널리 사용되는 TPE 소재를 활용합니다. 경질 기판은 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리카보네이트(PC), 나일론(PA6 또는 PA66), 아크릴로니트릴 부타디엔 스티렌(ABS) 등 다양한 재료로 제작할 수 있습니다, 폴리메틸메타크릴레이트(PMMA), 폴리스티렌(PS), 고충격 폴리스티렌(HIPS), 폴리페닐렌옥사이드(PPO), 아크릴로니트릴부타디엔스티렌(ABS) 또는 기질로 사용할 수 있는 기타 특수 목적 소재.

오버 몰딩 는 사출 성형 공정을 활용하여 하나의 플라스틱 소재(오버 몰드) 위에 다른 소재(기판)를 덧대어 성형합니다. 오버몰딩 플라스틱 소재는 일반적으로 TPE, 고무, TPU 또는 기판과 동일한 소재이지만 색상이 다른 소재를 사용합니다. 오버몰딩된 소재는 기판과 강력한 결합을 형성하여 장기적인 내구성과 의도된 환경에서 최적의 성능을 보장합니다. 오버몰딩을 사용하면 열가소성 엘라스토머(TPE)를 단단한 기판에 연결할 때 접착제가 필요하지 않습니다. 오버몰딩 기술은 몰딩 제조 공정을 간소화하고 비용을 낮추며 설계 유연성을 높입니다.

TPE 오버몰딩

금속 인서트 오버몰딩

오버몰딩의 유형

오버 몰딩의 유형에는 투샷 시퀀셜 오버몰딩인서트 오버몰딩, 멀티샷 사출 성형(2K 사출 성형, 3K 사출 성형 이상) 등 다양한 사출 성형이 가능합니다.

투샷 순차 오버몰딩

투샷 시퀀스 플라스틱 사출 오버몰딩성형기는 첫 번째 플라스틱 수지를 첫 번째 금형 캐비티(기판 금형)에 주입하고, 재료가 냉각되어 첫 번째 플라스틱 모양을 형성한 후 금형을 열면 모든 성형 공정이 기존의 사출 성형 공정과 동일합니다.

첫 번째 기판이 완전히 완성되고 냉각되면 기판을 두 번째 금형(오버몰드)에 삽입하고 금형을 닫은 다음 두 번째 재료를 주입합니다. 성형 공정은 기존 성형 공정과 동일하지만 성형 공정이 시작되기 전에 기판을 금형에 미리 로드하는 것이 차이점입니다.

이러한 모든 성형 공정은 전통적인 사출 성형기로 이루어집니다.

비활성 오버몰딩

오버 몰딩 삽입 두 번째 재료를 사출하기 전에 금형에 미리 성형된 인서트 또는 금속 인서트를 사용합니다. 인서트가 금속 또는 황동인 경우 금속이라고 부릅니다. 인서트 몰딩. 예를 들어 금속 나사 인서트 몰딩과 같은 오버 몰딩 공정을 많이 사용했습니다, 필터 인서트 몰딩이 유형의 오버 몰딩 는 단일 사출 성형 사이클 동안 금형 캐비티에 금속 인서트를 넣는 전통적인 사출 성형기를 사용하여 진행합니다.

아래 그림과 같이 인서트가 표시됩니다. 오버몰딩 금속 불활성. 이 유형의 오버몰딩 는 하나의 사출 금형만 필요하지만, 첫 번째 인서트가 플라스틱 부품으로 만들어진 경우 첫 번째 플라스틱 인서트 부품을 위한 추가 금형이 필요합니다.

멀티샷 사출 성형 또는 2K 사출 성형

2샷 사출 성형이라고도 하는 멀티샷 사출 성형도 오버몰딩의 한 유형입니다. 이 성형 기술에는 두 개의 사출 유닛이 있는 특수 사출 성형기가 필요합니다. 사출 배럴은 서로 평행하거나 수직일 수 있습니다. 이 기계에는 두 개의 사출 금형이 조립되며, 하나의 금형은 기판을 만들고 다른 하나는 오버몰딩 공정에 사용됩니다.

성형기는 첫 번째 플라스틱 수지를 기판 금형이라고도 하는 첫 번째 금형 캐비티에 주입합니다. 재료가 냉각되어 첫 번째 플라스틱 모양이 형성되면 금형이 열립니다. 이 과정은 기존의 사출 성형 공정과 동일합니다. 금형이 열리면 이동식 절반이 기판을 배출하지 않고 180° 회전합니다. 그런 다음 금형을 닫고 오버몰드라고도 하는 두 번째 사출을 시작합니다. 동시에 첫 번째 사출을 주입합니다. 두 번째 금형이 성형 공정을 완료하면 금형을 다시 열고 오버몰드에서 오버몰드된 제품을 배출합니다. 이 과정에서 두 번째 사이클을 위한 새로운 기판이 생성됩니다.

이것은 2K 사출 성형 공정의 완전 성형 사이클입니다.

오버몰딩

금속 나사가있는 인서트 몰딩, 금속 인서트 몰딩은 일종의 오버몰딩

TPE 오버몰딩

TPE(열가소성 엘라스토머) 플라스틱 재료는 사출 성형 분야에서 특히 오버 몰딩 부품에 많이 사용됩니다. 오버몰딩 시장에서 80% 이상의 오버몰딩 부품을 생산하고 있습니다. TPE 오버 몰딩,

TPE 오버몰딩 는 사출 성형 공정에서 TPE(열가소성 엘라스토머) 를 특정 요구 사항에 따라 단단한 소재(예: PC, PA66, ABS 소재)에 성형하면 오버몰딩된 TPE는 첫 번째 플라스틱과 강하게 결합하여 최종 사용 목적에 맞게 유지됩니다. TPE 소재가 두 번째 소재에서 벗겨지는 것을 방지하려면 소재 선택과 부품 설계가 매우 중요합니다.

TPE 오버몰딩 제조업체 는 플라스틱 사출 성형 부품에 대한 최적의 성형 제조 방법을 선택할 때 모든 관련 요소를 고려하여 2K 성형과 오버몰딩 공정 중 하나를 선택합니다. 중요한 요소로는 생산 능력, 재료 선택, 사용 가능한 장비, 인건비 등이 있습니다.

일반적으로 오버몰딩 공정은 총 생산량이 5만 개 미만일 때 가장 많이 선택됩니다. 이 수치는 부품 설계의 크기와 복잡성에 따라 달라지므로 참고용일 뿐 결정적인 수치는 아닙니다. 대량 생산 요구 사항(총 생산량 20만 개 이상)의 경우 2샷 사출 성형 공정이 더 나은 옵션이 될 수 있지만, 물론 일부 부품은 부품 설계에 따라 달라질 수 있으므로 오버몰딩 프로세스아래 부품과 같은 적의 예는 오버몰딩 공정으로만 성형할 수 있습니다.

TPE 오버몰딩

모든 TPE 오버몰딩 또는 2K 사출 성형 공정에서 가장 중요한 문제는 TPE와 피착재 사이의 접착력을 극대화하는 것입니다. 일부 TPE 오버몰딩은 멀티샷과 오버몰딩 간의 결합 강도가 크게 다를 수 있습니다. 투샷 몰딩으로 우수한 접착력이 생성되더라도 동일한 소재를 다음과 같이 사용할 경우 접착 강도가 낮을 수 있습니다. 오버몰딩. 따라서 고품질의 마감재를 만들기 위해 오버몰딩 및 2K 몰딩 제품TPE, 부품 설계, 엔지니어링 플라스틱 및 성형 공정의 특성에 대한 철저한 이해가 중요합니다.

TPE 오버몰딩 소재 선택 팁

고품질의 TPE 오버몰딩 제품, TPE와 기판 재료 모두 가장 중요하며, 오버 몰딩 부품의 품질을 정의하는 가장 중요한 요소는 두 재료 간의 병합이 얼마나 좋은지, TPE가 기판에서 쉽게 벗겨지면 재료가 문제가 될 것이며, 아래에 재료 선택을위한 몇 가지 팁이 있으며, 이 팁에 따라 오버 몰딩 부품에 가장 적합한 재료를 찾을 수 있습니다.

TPE 오버몰딩 부품의 두께

설계자들은 종종 가장 부드러운 TPE를 요구합니다. 그들은 TPE의 부드러운 경도계가 특정 두께(보통 0.1mm 미만) 이하에서는 "쿠션"을 제공하지 못한다는 사실을 깨닫지 못합니다. 두께에 따라 경도에 미치는 영향이 달라지므로 더 얇은 TPE 오버몰딩 부품은 더 단단하게 느껴집니다. 여러 개의 촘촘한 리브를 사용하면 재료를 많이 사용하지 않고도 두께가 두꺼워 보이는 효과를 낼 수 있습니다. 많은 주방용품 손잡이가 이 방법을 사용합니다.

TPE 플라스틱 소재의 경도,

제작 시 선택해야 하는 TPE 소재의 부드러움이 있습니다. TPE 오버몰딩특히 두께가 0.5mm 이상인 TPE는 더욱 그렇습니다. 좋은 터치감을 얻으려면 특별한 기능 요구 사항이 없는 한 다양한 유형의 TPE 쇼어 A 소재를 테스트해야 할 수 있으며, 일반적으로 시장에서 사용하는 TPE 쇼어 A 40~60은 너무 적으면 피착재에서 벗겨질 수 있고 경도가 너무 높으면 터치감이 좋지 않을 수 있습니다.

인쇄물 소재 선택 팁

TPE 소재에 비해 기판 소재는 선택하기가 더 쉬우며 나일론/PA(PA66 또는 PA66 GF30, PA6 또는 PA6 GF30 플라스틱), 폴리카보네이트(PC), 아크릴로니트릴 부타디엔 스티렌(ABS, PC/ABS, 아세탈(POM), PMMA 등). 최종 기판 소재 선택은 최종 목적에 따라 달라집니다. TPE 오버몰딩 부품에 가장 적합한 소재가 무엇인지 잘 모르겠다면 당사에 문의해 주시면 몇 가지 권장 사항을 제공해 드리겠습니다.

기판 및 TPE 오버몰드의 표면 마감 처리

피착재의 표면 마감도 TPE 고무의 접착력에 영향을 미칩니다. 접착력이 강할수록 벗겨 질 가능성이 적고 일반적으로 TPE와 기판 사이의 병합 표면 사이의 연마가 좋으며 TPE 캐비티 쪽에서 표면 마감이 TPE 오버 몰드에도 영향을 미치며 때로는 TPE 캐비티 몰드에 하이기 연마, TPE 오버 몰딩 부품이 캐비티 쪽에 달라 붙어 작은 VDI 질감을 추가하면이를 개선 할 수 있습니다.

TPE 오버몰딩 부품 설계 팁

앞서 언급했듯이 부품 설계는 고품질의 제품을 만드는 데 중요한 역할을 합니다. TPE 오버몰딩 제품입니다. 일반적으로 기판 부품의 디자인은 다른 플라스틱 사출 성형 부품과 유사합니다. 자세한 내용은 다음 페이지를 참조하세요. 사출 성형용 플라스틱 부품 설계. 그러나 기판과 TPE 오버몰딩 영역 사이의 병합 영역에는 몇 가지 요소가 있으며, 부품마다 형상이 다르기 때문에 표준 설계는 없지만 오버몰딩 부품 설계를 할 때 고려해야 할 몇 가지 핵심 사항이 있습니다. 그 요소는 다음과 같습니다:

오버몰딩 부품 설계 시 TPE 오버몰딩을 잘 밀봉하고 플래시를 방지하는 방법: 

TPE 소재는 플래시가 쉽게 발생하며(0.03mm 간격), 접착 가능한 TPE 소재는 표준 TPE 폴리머보다 더 엄격한 기준을 충족합니다. 부품 설계 시에도 마찬가지입니다. 기존 부품 설계와 달리 2성분 부품 설계는 두 가지 다른 열가소성 소재의 수축을 고려해야 합니다. 기판과 오버몰딩 모두 자체 게이트 및 러너 시스템이 있으며, 사용되는 개별 재료 특성에 맞게 조정해야 합니다.

최상의 사이클 시간을 맞추려면 기판과 오버몰딩 벽 두께가 일정해야 합니다. 대부분의 오버몰딩 애플리케이션에서 1~3mm의 벽 두께는 만족스러운 접착을 보장합니다. 수축, 무게 및 사이클 시간을 줄이려면 더 두꺼운 조각을 코어링해야 합니다. 백필과 가스 트랩을 방지하려면 벽 두께 전환이 점진적으로 이루어져야 합니다. 날카로운 콘에 반경을 추가하여 응력 문제를 줄입니다. 깊고 사용할 수 없는 블라인드 포켓이나 리브는 피하세요. 긴 드로우는 탈형이 용이하도록 구배 각도가 3~5도여야 합니다. 오버몰딩된 컴파운드의 경우, 금형이 열릴 때 전진 코어를 사용하고 부품에 날카로운 모서리가 없으며 엘라스토머가 이형 중에 구부러지는 경우 깊은 언더컷을 설계할 수 있습니다.

대부분의 TPE 제품은 상당한 유동 방향 금형 수축과 중간 정도의 교차 유동 수축이 있습니다. 툴에서 압출된 후 오버몰딩 컴파운드가 피착재보다 더 많이 수축할 수 있습니다. 이로 인해 일반적으로 오버몰딩 재료의 방향으로 기판이 늘어날 수 있습니다. 이는 특히 길고 얇은 부품 또는 저탄성 기판이나 오버몰드. 이를 완화하려면 고탄성 기판 재료와 보강 리브를 사용하십시오. 더 얇은 코팅과 낮은 경도의 오버몰드 그레이드가 도움이 됩니다. TPE 흐름에 영향을 미치도록 게이트를 재배치하는 것도 도움이 될 수 있습니다.

단면적을 늘리는 등 TPE 소재와 피착재 사이의 접착력을 강화하면서도 기능이나 외관을 손상시키지 않도록 설계를 개선할 수 있다면 큰 도움이 될 것입니다. 아래는 오버몰딩 부품 설계 팁의 예시 중 하나입니다.

오버몰딩 부품 설계 팁

분리된 영역을 너무 많이 디자인하지 마십시오. TPE 오버몰딩 부품를 복잡하게 만들 수 있으므로 오버몰드 제조 그리고 성형 공정. 특히 많은 부분이 파팅 라인 영역으로 설계되어 있어, 특정 기능의 목적이 아니라면 TPE 오버몰딩 부품을 설계할 때 플래시를 완전히 해결하기는 어렵고 최대한 단순하게 설계해야 합니다.

TPE 오버몰딩

오버몰드 디자인을 위한 팁:

다음을 위한 사출 금형 설계 시 오버몰딩 부품의 경우 첫 번째 금형(기판 금형)은 플라스틱 수축률에 따라 수축률을 추가하지만 오버몰딩 금형 (두 번째 금형)의 경우, 금형 위에 사출할 때 시네이크 비율을 추가하지 않습니다.

오버몰딩 비용

기본 비용은 오버몰딩 는 모든 애플리케이션에서 동일하게 적용되는 고정된 숫자가 아닙니다. 1달러에서 10달러 사이로 다양한 값을 가질 수 있습니다.

이것은 매우 넓은 가격대입니다. 올바른 값은 오버몰딩 공정에 관련된 여러 구성 요소에 따라 달라집니다. 비용에 영향을 미치는 요소는 다음과 같습니다:

사출 성형 장비

사출 성형 장비의 초기 비용은 적용 분야와 유형에 따라 크게 달라질 수 있습니다.

기업에서 자체적으로 보유하고 있는 소규모 사출 성형 장비가 있습니다. 그리고 일반적으로 서비스 제공업체나 대량 생산이 필요한 대규모 제조 업계에서 사용하는 대형 오버몰딩 기계가 있습니다.

전문 산업 오버몰딩 장비 비용은 $50,000에서 $200,000 사이입니다. 배송비가 포함될 수 있습니다. 이 기계는 숙련된 운영자가 필요하므로 아마추어나 취미로 사용하기에는 적합하지 않습니다.

오버몰드 제조 비용

동안 오버몰딩 장비는 일회성 투자이므로 곰팡이 이상 각 맞춤형 디자인에 따라 추가 비용이 발생하며, 각각의 고유한 오버몰드 부품 디자인에는 고유한 오버몰드가 필요합니다. 이는 생산되는 모든 다른 부품에 대한 비용입니다. 따라서 오버몰드 제조 비용은 오버몰드 부품의 가장 중요한 원가 요인 중 하나입니다.

이 초과 금형 비용은 금형 제작에 필요한 부품 설계, 부품 크기 및 품질에 따라 달라질 수 있습니다. 일반적으로 이 목표를 위해 다음과 같은 세 가지 요소가 사용됩니다.

설계 복잡성

더 많은 캐비티와 상단 몰드 폴리싱이 있는 매우 복잡한 디자인은 추가 비용이 발생합니다. 이러한 디자인에는 개발, 연구 및 기술력이 필요합니다. 이를 위해 디자인 프로세스를 위해 전문가를 고용할 수 있습니다. 두 옵션 모두 비용이 발생합니다.

부품 크기

오버몰드는 다른 사출 금형과 동일하며, 크기가 크면 대형 몰드 베이스와 성형기가 필요하므로 오버몰드 비용과 단위 오버몰드 부품 비용이 증가합니다.

인건비

오버몰딩과 관련된 대부분의 단계는 자동화되어 있으며 소프트웨어 시스템에 의해 실행됩니다. 예를 들어 CNC 기계는 컴퓨터 수치 제어 프로그램에 의해 실행되고, 3D 프린터는 자체 프로그램으로 실행되며, 사출 성형도 기계적 처리가 이루어집니다.

오버몰딩 비용에 대한 최종 요약

다음을 찾고 계신다면 오버몰딩 부품 또는 맞춤형 사출 성형 부품에 대한 오버 몰드, 오버 몰딩 공급 업체가이를 가져야하기 때문에 사출 성형 장비에 대한 비용을 지불 할 필요가 없지만 오버 몰드 비용, 오버 몰딩 공정 비용, 재료 비용, 포장 비용 등을 지불해야합니다. 가격을 알고 싶다면 오버몰딩 프로젝트가 필요하신 경우 문의해 주시면 24시간 이내에 견적을 보내드리겠습니다.

금속 인서트 몰딩

금속 인서트 몰딩

오버몰딩 비용을 줄이는 방법

오버몰딩 는 비용 효율성과 신뢰성으로 인해 선호되는 제조 공정입니다.

이 프로세스는 다른 대안에 비해 저렴하지만 비용을 더욱 절감할 수 있습니다. 이를 위해 고려해야 할 몇 가지 사항이 있습니다:

CAD 설계 최적화

하나의 부품에 대해 다양한 CAD 설계를 통해 접근할 수 있습니다. 어쨌든 모든 설계 아이디어가 완벽한 것은 아닙니다. 동일한 부품에 대한 일부 설계는 시간과 자원 낭비로 이어질 수 있습니다. 따라서 효율적인 CAD 설계를 통해 부품의 복잡성을 단순화하면 리소스를 최적으로 활용할 수 있습니다.

부품 크기 줄이기

부품이 크다고 해서 항상 우수한 부품은 아닙니다. 부품의 크기가 커지면 부품에 필요한 사출 금형의 비용도 증가합니다. 부품 크기를 줄임으로써 동일한 공정을 달성할 수 있다면 이를 선택하는 것이 좋습니다.

금형 위에 다시 만들기

오버 몰드를 여러 용도에 재사용하여 최대한 활용하세요. 동일한 부품뿐만 아니라 유사한 부품에도 동일한 금형을 사용할 수 없습니다. 가능한 경우 조정하거나 성형하여 사용할 수 있습니다.

DFM 분석 사용

DFM은 제조를 위한 설계를 의미합니다. 오버몰딩에서 DFM은 고객의 목적에 부합하고 정해진 예산 범위 내에서 부품을 생산하는 것을 의미합니다.

DFM의 경우 분석가들은 과학, 예술, 기술을 기반으로 다양한 요소를 고려하여 가장 성공적인 디자인을 찾고, 그 결과 금형 비용보다 사출 비용을 절감합니다. 바로가기 제조를 위한 디자인 페이지에서 자세히 알아보세요.

곰팡이 이상

둘 다 오버 몰딩 그리고 2K 사출 성형 는 매우 유사한 공정이며, 때로는 두 성형 공정이 동일한 부품에서 작동할 수 있지만, 어떤 것은 단일 오버몰딩 또는 2K 사출 성형이는 전적으로 부품 설계에 따라 다릅니다.

사출 오버몰딩의 장점

  1. 2K 사출 성형과 비교, 오버 몰딩 가 더 쉽게 만들 수 있습니다. 일반 사출 성형기를 사용하여 하나의 성형 부품에 두세 가지 색상을 만들거나 하나의 끝 부분에 두세 가지 재료를 사용할 수 있습니다.
  2. 일부 소량의 2색 성형 부품 프로젝트의 경우 2K 사출 성형기를 반전하거나 고용할 필요가 없습니다. 오버몰딩 프로세스는 고객의 요구 사항을 충족하는 가장 효과적이고 비용 효율적인 방법입니다.
  3. 디자인 다양성을 높이고 다양한 소재 구성에서 최종 제품의 품격을 높여줍니다.
  4. 조립 비용이 절감되면 최종 제품에서 수행되는 2차 활동이나 공정이 줄어듭니다. 따라서 인건비가 절감됩니다. 또한 제조 후에는 더 이상 비용이 발생하지 않습니다.
  5. 부품은 기계적으로 맞물리게 두면 하나가 되기 때문에 높은 수준의 안정성과 구성을 갖습니다.
  6. 제품 오버몰딩 플라스틱을 사용한 제품은 플라스틱 수지가 완벽하게 구조화되어 진동과 충격에 대한 저항력이 높습니다.
  7. 플라스틱 성형 부품은 생산 단계에서 접착이 없기 때문에 더욱 안정적입니다.
  8. 최종 제품은 눈길을 사로잡는 디자인과 견고한 구성품 등 원하는 표준을 갖춘 제품입니다.

성형에 비해 사출의 단점

  1. 이후 오버 몰딩 공정은 첫 번째 성형된 기판 부품을 다른 오버몰드로 옮기는 과정을 거치므로 2K 사출 성형 공정보다 공차가 좋지 않습니다.
  2. 오버몰딩된 금형에 기판을 삽입하기 위해 로봇이나 수작업이 필요하기 때문에 생산 능력이 2K 사출 성형만큼 효율적이지 않습니다. 시간이 오래 걸리고, 특히 두 개 이상의 기판이 하나의 금형에 있는 경우 성형 파라미터가 안정적이지 않은 경우가 있습니다. 이로 인해 추가적인 문제가 발생하고 낭비율이 높아져 (기판과 오버몰딩된 재료에서 발생하는) 폐기물의 양이 두 배로 증가합니다.
  3. 와 함께 오버몰딩 프로세스의 경우 플라스틱 호환성 측면에서 선택의 폭이 좁습니다. 일부 소재는 서로 잘 접착되지 않거나 사출 성형 공정의 높은 온도와 압력을 견디지 못할 수 있습니다.
  4. 오버몰딩의 최종 제품에는 2차 공정이 수행되지 않습니다. 성형 재료가 차가워지면 활동과 조정이 완전히 중단됩니다.
  5. 제품이 부족한 경우 이러한 작업을 실행하는 데 많은 비용이 듭니다. 기판을 오버 몰드에 넣을 사람이 필요하기 때문에 사이클 시간과 생산 비용이 그에 따라 증가합니다.
  6. 오버몰딩 공정에는 일반적으로 기판용과 오버몰드용 금형 두 개가 필요하므로 초기 금형 비용이 더 많이 듭니다.
  7. 오버몰딩 는 기존 사출 성형보다 더 복잡한 공정으로 두 사출 시스템 간의 정밀한 조정과 적절한 금형 설계가 필요합니다.
  8. 오버몰딩 공정에 문제가 있는 경우, 오버몰딩의 문제 해결 및 수정은 기존 사출 성형보다 더 어려울 수 있습니다.

2K 사출 성형이란 무엇인가요? (투샷 성형)

투샷 사출 성형2K 사출 성형은 두 가지 색상 또는 재료를 하나의 플라스틱으로 성형하는 데 사용되는 제조 공정입니다. 이 투샷 성형 기술은 2K 사출 성형기를 사용하여 두 가지 재료 또는 두 가지 재료 색상을 하나의 플라스틱 부품에 혼합하는 기술입니다.

이 공정에 관련된 화학 결합 공정은 두 개 이상의 재료를 하나의 부품으로 결합할 수 있기 때문에 매우 중요합니다. 2K 사출 성형 기술 프로세스를 사용할 때 재료 선택은 프로젝트의 성공 여부에 중요한 요소가 됩니다.

2K 사출 성형

2K 사출 성형의 이점 

2K 사출 성형 는 기존의 단일 재료 사출 성형에 비해 다양한 이점을 제공합니다. 이러한 이점 중 일부는 다음과 같습니다:

비용 효율적

2단계 공정에서는 1차 금형을 회전시키고 2차 금형을 제품 주위에 배치하여 호환되는 두 번째 열가소성 플라스틱을 2차 금형에 삽입할 수 있도록 기계 사이클을 한 번만 진행하면 됩니다. 이 방식은 별도의 기계 사이클 대신 한 번의 사이클만 사용하기 때문에 모든 생산 실행에 드는 비용이 적고 최종 제품을 만드는 데 더 적은 수의 직원이 필요하면서도 실행당 더 많은 품목을 납품할 수 있습니다. 또한 라인에서 추가 조립할 필요 없이 재료 간의 강력한 결합을 보장합니다.

효율성 향상

투샷 몰딩 를 사용하면 하나의 툴로 여러 부품을 성형할 수 있으므로 부품 제작에 필요한 노동력이 줄어들고 성형 공정 후 부품을 결합하거나 용접할 필요가 없습니다.

더 나은 품질

하나의 툴에서 투샷이 수행되므로 다른 성형 공정보다 공차가 적고 정확도와 반복성이 높으며 불량률이 감소합니다.

복잡한 성형

투샷 몰딩 를 사용하면 성형 후 공정으로는 달성할 수 없는 기능을 위해 다양한 재료를 통합한 복잡한 금형 디자인을 만들 수 있습니다.

2샷 사출 성형

2K 사출 성형의 단점

2K 사출 성형 에는 많은 장점이 있지만 모든 것이 그렇듯 장단점이 있습니다.

단점 2K 사출 성형 2K 사출 성형은 첫 번째 샷과 두 번째 샷의 두 개의 금형이 필요하기 때문에(그래서 투샷 성형이라고 부릅니다), 2K 사출 금형을 만드는 것은 두 개의 금형을 하나의 기계(투샷 사출 성형기)에서 함께 작동하기 때문에 두 개의 금형을 따로 만드는 것보다 더 어렵습니다. 따라서 문제없이 전환하기 위해서는 두 개의 금형이 필요합니다.

또한 2K 사출 성형 공정은 2K 사출 성형기를 사용해야 하므로 기계 비용이 더 많이 들고 기계를 조정하는 특수 기술자가 필요합니다. 이 또한 기존 사출 성형보다 비용이 더 많이 듭니다. 궁극적으로 2K 사출 성형 예를 들어 씰을 수동으로 부착할 필요가 없기 때문에 인건비와 조립 비용을 절감할 수 있습니다. 따라서 조립 단계가 필요하지 않습니다.

2K 사출 성형의 또 다른 단점은 두 가지 다른 플라스틱이 모이기 때문에 플라스틱 제품의 재활용이 어렵다는 점입니다. 플라스틱이 '같은 계열'인 경우에도 반환 흐름의 품질이 매우 낮아져 높은 수준의 용도로 플라스틱을 재사용하기가 어렵습니다.

오버몰딩 및 2K 사출 성형 서비스 선택 방법

오버 몰딩을 사용해야 하는 경우와 2K 사출 성형 프로세스를 사용해야 하는 경우에 대해 궁금한 점이 있을 수 있습니다. 다음은 몇 가지 간단한 제안입니다:

  1. 오버몰딩 또는 2K 성형 부품의 수량이 수천 개 또는 수만 개에 불과한 경우 금형 비용을 크게 줄일 수 있으므로 2K 성형 공정 대신 오버몰딩 공정을 사용하는 것이 좋습니다.
  2. 500,000개 이상의 부품이 필요한 경우 2K 사출 성형이 가장 비용 효율적인 성형 공정입니다. 이는 오버몰딩과 관련된 높은 인건비와 2K 금형, 투샷 사출 성형기 및 관련 장비와 관련된 높은 초기 비용 때문입니다.
  3. 일부 부품에는 오버몰딩이 유일한 방법인 반면, 다른 부품에는 이중 사출 성형 공정이 필요합니다. 이는 부품 설계 구조에 따라 다릅니다. 확실하지 않은 경우 다음 주소로 데이터를 보내주세요. info@plasticmold.net. 이를 확인하여 참조할 수 있도록 가격을 제공해 드릴 수 있습니다.

오버 몰딩 또는 2K 사출 성형 서비스를 찾고 계십니까?

Sincere Tech는 최고 중 하나입니다. 중국의 사출 성형 회사. 다음을 찾고 계신다면 오버몰딩를 클릭하고 몰딩을 삽입합니다, 2K 몰딩또는 기타 맞춤형 금형에 대한 3D 설계 도면과 요구 사항을 보내 주시면 다른 누구와도 데이터를 공유하지 않습니다. 당사는 기꺼이 NDA 문서를 작성하여 프로젝트의 안전을 보장하세요.

장기적인 비즈니스 관계를 위해 고품질 오버 몰딩 부품, 2K 금형 및 성형, 플라스틱 툴링 및 플라스틱 부품에 대해 가장 경쟁력있는 가격을 제공하고 제품에 가장 적합한 사출 성형 공정을 제안 할 것입니다.

오버몰딩, 2K 몰딩, 다이캐스팅, 가공 등 플라스틱 금형 제작 및 맞춤형 금형 서비스를 제공한 18년 이상의 경험과 18년의 유창한 기술 영어 커뮤니케이션(기술 영어 커뮤니케이션은 전 세계 고객과 협력하는 데 매우 중요합니다) 경험이 있습니다.

소액 주문도 가능합니다. 주요 수출 시장: 아시아, 호주, 중남미, 동유럽, 북미, 서유럽 및 전 세계.