タグ アーカイブ: 熱可塑性エラストマー

TPE素材とは

熱可塑性エラストマー または TPE素材 は特殊な半結晶多相熱可塑性材料で、ゴムポリマーの弾力性と熱可塑性材料の加工性の両方の特性を備えています。多くの熱可塑性エラストマー(TPE)と同様、この材料は自動車や医療機器製造を含む多くの産業で広く使用されています。この記事では、TPE材料について、化学組成、射出成形などの製造技術、ポリマー階層における位置づけの観点から説明する。また、TPEプラスチックの可能性と欠点、さらに最新の開発状況についても見ていく。

TPE(熱可塑性エラストマー)射出成形とは?

TPE射出成形は、溶融射出技術によってTPEを成形し、部品を形成する成形技術の一つである。このプロセスは、高速で環境にやさしく、薄くて丈夫な部品を製造できるため、人気があります。 TPE射出成形 は公差設計の柔軟性を提供し、大規模な自動製造に最適である。そのため、自動車業界や家電業界で人気がある。

 

熱可塑性エラストマー(TPE)プラスチックとは?

TPEは熱可塑性エラストマーの一種で、ゴムのような弾力性と塑性加工性を備えている。これらのセラミックスは、加熱すると何度でも軟化させることができ、また何度でも硬化させることができる。この特定の側面が、TPE素材と熱硬化性ゴムを区別する立場にあると彼らは指摘する。そのため、リサイクルや成形が容易になるのだ。

TPE(熱可塑性エラストマー)成形プロセス

それでは、TPEプラスチックの製造工程を見てみよう。

1.原材料の準備

ペレット状のTPE原料は、通常射出成形機の上にあるホッパーに集められ、供給される。原料は1つのペレットに配合されるため、成形と加熱の各段階で均等に効率よく処理されます。このため、成形結果が非常に予測しやすくなり、工程全体を通して材料の取り扱いに関する問題が軽減されます。

TPE素材

2.溶融段階

これらのTPEペレットは、次にホッパーから加熱チャンバーに運ばれ、そこでペレットが加熱されます(通常は約200~250℃。この温度範囲は、使用するTPE材料の種類によって異なります)。熱によってペレットは液体のような塊に軟化し、必要な形状に簡単に成形できるようになります。温度が高すぎると材料が損傷し、製品の品質に影響を及ぼす可能性があるため、この工程では特に温度面をよく監視する必要がある。

溶融材料

 

3.射出段階

スクリューまたはプランジャーは、高圧下でTPE材料を金型のキャビティの形状に押し込む。TPE材料は、最終製品の属性に関わる複雑な形状を含む可能性があります。この段階は、最終部品に収縮や空洞、気泡がなく、トップサイドの何百もの注ぎが確実に行われるよう、注意深く監視する必要があります。

4.冷却と凝固

金型キャビティへの充填中、溶融したTPEは冷却され、キャビティの金型を形成し、その過程で固化します。製品の冷却速度を調整し、部品の歪みに影響する不均一な温度分布を最小限に抑えるためです。ここで、金型に水路などの冷却システムを設けてもよい。制御された冷却のもう一つの利点は、反りをなくし、収縮の確率を最小限に抑えることで、最終的なサイズが正確になることです。

金型冷却チャンネル

5.排出ステージ

TPE部品が固まった後、金型キャビティがエジェクターピンなどを使って押し出します。その後、TPE部品は骨抜きにされ、TPE部品に必要な次の作業に備えます。この段階には重要なタイミングがあり、必要以上に早く押し出すと部品が歪み、それ以降に押し出すと全体の生産速度に影響する可能性があります。

TPE射出成形

TPEとTPR素材の違いとは?

次の表は、TPEとTPRの詳細な比較である。 tpr材料 のページで、TPRプラスチックとは何かについてもっと知ってください。

特徴TPE(熱可塑性エラストマー)TPR(熱可塑性ゴム)
構成プラスチックとゴム状ポリマーのブレンド(SEBS、TPUなど)スチレン系エラストマー、通常はSEBS
硬度(ショアA)20-9010-80
弾力性高い、ゴムのようなややソフトで高い柔軟性
最大温度抵抗120℃まで100℃まで
アプリケーション自動車、医療、エレクトロニクスフットウェア、グリップ、家庭用品
耐薬品性中~高中程度
リサイクル性高い中程度

熱可塑性エラストマー(TPE)のさまざまなカテゴリー

熱可塑性エラストマー(TPE)は、化学構造と特性によっていくつかのカテゴリーに分けられます:

TPEプラスチック

  1. スチレン系ブロック共重合体(SBC)

スチレン系ブロック共重合体(SBC)は、スチレンとゴム状ブロックのユニークな組成により、柔軟性とプラスチックの強度を併せ持つことから、最も広く使用されているTPEのひとつです。SBCは、押出成形、射出成形、ブロー成形などさまざまな方法で加工できるため、幅広い用途に適応できる。

これらのTPEは優れた弾性、透明性、柔軟性を示し、着色も容易である。グリップ、ハンドル、医療機器、包装材料、家庭用品など、ソフトな感触と柔軟性を必要とする用途によく使用されている。また、SBCは耐湿性に優れ、透明性が高いため、透明包装材やパーソナルケア製品の特殊用途にも最適です。

  1. 熱可塑性ポリウレタン(TPU)

熱可塑性ポリウレタン(TPU)は卓越した耐久性と柔軟性で知られ、要求の厳しい用途によく選ばれています。TPU素材は耐摩耗性に優れ、摩耗の激しい用途で長持ちするほか、優れた弾力性、低温での柔軟性、油、グリース、溶剤に対する耐性も備えています。

これらの特性により、TPUは自動車、履物、医療用途に特に適している。自動車業界では、TPUはサスペンション・ブッシング、シール、内装部品によく使われています。履物では、柔軟性と耐久性の両方が求められる靴底に使用されています。医療分野では、TPUはチューブやカテーテルなど、弾力性と人体への適合性が求められる器具に採用されています。TPUは汎用性が高いため、さまざまな硬度レベルや透明度にカスタマイズすることができます。こちらへ TPU射出成形 のページで詳細をご覧ください。

  1. 熱可塑性オレフィン(TPO)

熱可塑性オレフィン(TPO)は、ポリプロピレン(PP)とエラストマーのブレンドで、ゴムとプラスチックの両方の特性を兼ね備えた素材です。TPOは標準的なポリプロピレンに比べ、耐薬品性、耐衝撃性、耐紫外線性に優れており、屋外や高負荷のかかる用途に適しています。

特にバンパーカバー、内装トリム、ダッシュボード部品などの自動車用途や、耐久性と耐候性が重要な建築用屋根膜によく使用されている。家電製品では、TPOが耐衝撃性と強度を必要とする部品に貢献している。これらの素材はリサイクル可能であることが評価され、持続可能な製品設計における魅力を高めている。

  1. 熱可塑性バルカニゼット(TPV)

熱可塑性加硫ゴム(TPV)は、熱可塑性プラスチックとゴムのユニークなブレンドで、ゴム相が動的に架橋されている。この架橋プロセスにより、材料の弾性、耐熱性、全体的な耐久性が向上するため、TPVは従来の加硫ゴムの性能特性の多くを模倣しながら、熱可塑性プラスチックの加工上の利点を提供することができる。

TPVは、自動車用ウェザーシール、ホース、ガスケットなど、耐熱性や耐薬品性が要求される用途で一般的に使用されている。TPVは優れた弾力性を持ち、繰り返しの圧縮や屈曲に耐えることができるため、動的な用途に適している。さらに、軽量であるため、自動車部品に使用される場合、燃費の向上に貢献します。

  1. コポリエステルエラストマー(COPE)

コポリエステル・エラストマー(COPE)は、柔軟性と強度のバランスが高く評価され、高ストレス条件下でも優れた性能を発揮します。COPEは、高温、燃料、油に対する耐性が要求される用途によく使用され、特に自動車や工業分野のエンジニアリング用途に適しています。

例えば、COPEは厳しい環境要因にさらされても柔軟性と構造的完全性を保つため、ギア、ベルト、ダンパーの製造に使用されています。自動車用途に加え、COPEは弾力性と柔軟性の両方が要求されるスポーツ用品や電子機器にも有用です。このエラストマーは屈曲疲労に非常に強いため、繰り返し曲げたりねじったりしても大きな摩耗を起こすことなく耐えることができます。

  1. ポリエーテルブロックアミド (PEBA)

ポリエーテルブロックアミド(PEBA)は、柔軟性、耐薬品性、軽量性という優れた特性を兼ね備えています。優れた屈曲寿命と低密度で知られるPEBAは、軽量化と耐久性が重要な用途によく使用されています。医療分野では、PEBAは必要な柔軟性、生体適合性、体液への耐性を備えているため、カテーテルチューブやバルーン血管形成術などの部品に使用されています。

スポーツ用品では、弾力性、低温での柔軟性、耐衝撃性が鍵となる運動靴やスキーブーツなど、軽量で高性能な製品に貢献している。さらに、PEBAは油、グリース、さまざまな化学薬品に対する耐性が高く、過酷な環境下でも性能を維持することができます。

  1. 環状オレフィンコポリマー(COC)

環状オレフィン・コポリマー(COC)は、その高い光学的透明性、低吸湿性、寸法安定性により、TPEの中でもユニークな素材です。この素材はランダムなポリマー構造を持ち、ガラスに似た優れた透明性を実現します。COCは、診断機器、医薬品包装、光学レンズなど、透明性、耐薬品性、純度が不可欠な医療・光学用途でよく使用されます。

吸湿性が低いため、デリケートな医療品や医薬品の内容物の保護に役立ち、医療用包装に非常に適している。さらに、COCの高いガラス転移温度は耐熱性を必要とする用途に適しており、低い複屈折は光学機器に有利である。COCは、透明性と強度の両方を必要とする高度な包装材料やレンズによく選ばれています。

各カテゴリーのTPEは、自動車、医療、消費者製品、工業エンジニアリングなど、さまざまな業界の特殊用途に適した独自の特性を備えています。適切な種類のTPEを選択することで、メーカーはさまざまな用途で製品の性能、耐久性、費用対効果を最適化することができます。

TPE素材の重要な特性

TPEのさまざまな特性を探ってみよう;

TPE射出成形部品

1.弾力性

TPEはゴム弾性体の特性を持ち、比較的ゴム弾性の特性があるため、伸ばしたり戻したりすることができる。そのため、柔軟性と弾力性が求められる用途、すなわちシール、ガスケット、その他のソフトタッチの用途に適しています。

2.熱可塑性

TPEはゴムと同じ特性を持つが、高温で溶かして再利用できる点が特徴である。TPEは熱可塑性であるため、溶かして製品を成形し、再成形して使用することができ、製造やリサイクルに便利です。

3.耐久性

TPEは、さまざまな用途で優れた耐摩耗性、耐摩耗性、耐衝撃性を発揮します。特に、自動車部品や電子機器など、耐久性のある部品が必要とされる場合に適しています。

リサイクル性

他の熱可塑性プラスチックと同様、TPEはリサイクル可能で、製造が環境に与える影響を軽減します。このリサイクル可能性は、廃棄物を最小限に抑えたり、なくしたりしようとする産業で、包装資材の生産性を高めようとする場合に役立ちます。

TPEとTPRのシリコーンまたはゴムの違いは何ですか?

次の表は、TPEとTPRのシリコンと天然ゴムの詳細な比較である。 TPE vs シリコーン TPEとシリコーンの違いについて詳しくお知りになりたい方は、以下のページをご覧ください。 シリコーンは安全か ページを参照されたい。

特徴TPE(熱可塑性エラストマー)シリコーンゴム(天然/合成)
構成熱可塑性プラスチックとエラストマーのブレンド合成ポリマー、シリカベース天然(ラテックス)または合成(SBRなど)
硬度(ショアA)20-9010-8030-90
弾力性高い、ゴムのような非常に高く、低温でも柔軟非常に高い
最大温度抵抗120℃まで200℃まで100℃まで(天然)、150℃まで(合成)
耐薬品性中~高素晴らしい良好(合成)、中程度(天然)
加工射出成形、押出成形圧縮成形、押出成形加硫、圧縮、押出
リサイクル性高い低い低~中程度
アプリケーション自動車、医療、消費財医療、食品接触、電子機器タイヤ、ガスケット、シール、履物
コスト$$(コストパフォーマンス、リサイクル可能)$$$(高コスト、高耐久性)$$(タイプにより異なる、リサイクル性に制限あり)

TPE材料を選択する際の主な考慮事項

TPE素材を選ぶ際の重要なポイントをいくつか紹介しよう;

1.応募資格

引張強度、柔軟性、硬度など、用途に必要な特定の機械的特性を決定する。TPEの典型的な特性はPとE-POの組成によって異なり、同様のTPE配合でも使用環境によって性能が変わる。

2.温度範囲

TPEを使用する温度条件を考慮する。TPEには最高温度限界もあり、高温または低温の使用条件で必要な性能特性を発揮するために適切なグレードを選択する。

3.化学的適合性

TPEがどの程度の化学薬品にさらされるかを自己評価する。TPEには化学的に優れているものもあれば、そうでないものもあります。その材料が使用される環境、つまり条件や状況を知ることは、劣化したり特性を失ったりしない材料を明らかにするのに役立ちます。

4.加工方法

計画されている加工方法(射出成形/押出成形など)を特定する。TPEの中には、特定の工程でうまく機能するように特別に設計され、製造の成果とコストに大きな違いをもたらすものもあります。

5.規制遵守

 

TPEは各業界で適用される法令に準拠しています。これには医療や食品関連も含まれる。TPEの製品と素材は、安全性と環境に関する要件を満たさなければなりません。

TPEの環境およびリサイクル要因

TPEの重要な環境工場とリサイクル工場について説明しよう;

TPE成形品

  1. リサイクル可能: TPEはリサイクル可能であることが多く、これは他のゴムの種類と比較して最大の利点の1つです。TPEのコンセプトがリサイクル可能かどうか、利用後に再利用できるかどうか、再利用可能かどうかを見極めましょう。
  2. 環境への影響: 使用、生産、廃棄における生態系への影響という観点から、TPEの適切性を分析する。また、製品の材料や製造元が再生可能かどうか、調達や調達元を評価する。
  3. 終末期への配慮: ライフサイクル終了時の製品の取り扱い計画を明確にする。TPEのリサイクル、再利用、排出の選択肢をいくつか知っておく。
  4. 生分解性:TPEは生分解性がなく、市場でも環境に優しい。
  5. サステナビリティの実践:

TPE製造業者のエネルギー消費、排出、廃棄、その他の関連事項を評価する。これは、持続可能な生産工程を実践する意思のあるサプライヤーと一緒に行うべきである。

TPEの用途

TPEの重要な用途をいくつか紹介しよう;

  • 自動車部品 TPEはその高い強度と柔軟性から、シール、ガスケット、自動車内装部品に有用である。
  • 医療機器 TPEの主な用途は、チューブ、カテーテル、シリンジシールなどで、その生体適合性が評価されている。
  • コンシューマー・エレクトロニクス ケーブル、プラグ、ソフトタッチグリップの用途でよく知られている。
  • フットウェア: TPEは軽く、優れた特性と柔軟性を持つため、靴底に広く使用されている。
  • パッケージング: TPEはその強度と成形性の高さから、フレキシブルフィルム、キャップ、シールなどに使用されている。

TPEケーブル

TPEの長所と短所

TPEの利点と限界を以下に挙げる。

長所:

  1. リサイクル可能で費用対効果が高い
  2. 射出成形による加工が容易である。
  3. ある程度の伸縮性もある素材は、弾性と熱可塑性の両方を兼ね備えている。
  4. 設計の柔軟性を提供
  5. 幅広い硬度レベル

短所だ:

  • また、他の難燃剤に比べて耐熱性が低い。
  • とはいえ、これらのラミネートの耐薬品性は、グレードによってはかなり控えめである。
  • 材料費は他の従来のプラスチックに比べて高い。
  • また、高温地域での使用にも適さない。

いつTPEを使うべきか

TPEが適切な選択肢となりうる点をいくつか挙げてみよう;

  • 柔軟なアプリケーション: この種の材料はゴムのような性質を持つため、シールやガスケットのように材料の柔軟性が求められる場合に最も有用である。
  • 成形部品: 主に様々な形状の大量生産に使用される。射出成形と押し出し成形の両方の技法で複雑な形状を作る。
  • 環境への配慮: TPEはリサイクル可能であり、環境に優しいという条件を満たしているため、TPEを使用した製品に適している。
  • 規制遵守: 医療や食品接触産業など、衛生基準の遵守が求められる産業や事業での使用に最適。

TPEを使用しない場合

以下は、TPESの使用を避けなければならない点である;

  • 高温アプリケーション: TPEはそのような環境では劣化したり特性を失うことが知られているため、摂氏120度以上の環境での使用には適さない。
  • 極度の化学物質への暴露: 素材に影響を与える可能性のある強力な化学薬品や溶剤に触れなければならない製品は使用しない方がよい。
  • コスト重視のアプリケーション: もし、より低いコストの方が要求性能(ゴムやプラスチック)に適しているのであれば、そちらに目を向けるべきだ。

結論

結論として、TPEは柔軟な特性と高い耐久性を持ち、加工が容易であるため、自動車産業や家電製品など、多目的な用途の要件を満たすことができる。持続可能性は時代とともに大きな意味を持つようになっているため、TPEのリサイクル性とバイオマテリアルの使用可能性は、TPEの魅力をさらに高めている。技術革新が進むにつれて、TPEはさまざまな業界のさまざまな製品設計に、より多くの機能を取り込んでいくことが予想される。

よくある質問

Q1.TPE素材とは何ですか?

TPEプラスチックはポリマーであり、その特徴はゴムのような弾力性と熱可塑性である。

Q2.TPEとゴムの違いは何ですか?

しかし、ゴムとは違う、 ティーピーイー プラスチック材料は溶かして再成形することができ、このプロセスは何度も繰り返すことができる。

Q3.TPEプラスチックはどのような産業で使われていますか?

TPEプラスチック材料は、自動車、医療、エレクトロニクス、消費財産業で応用されている。

Q4.TPEプラスチックはリサイクルできますか?

実際、TPE素材はリサイクルや再加工が可能で、その際、特性の変化はわずかか無視できる程度です。

Q5.TPEプラスチックは耐熱性がありますか?

他の多くのエンジニアリング熱可塑性プラスチックよりも柔軟だが、耐熱性は低い。その上、高温条件下では適さない。

Q6.TPEにはどのような種類がありますか?

エラストマーには、スチレン系ブロック共重合体(SBC)、熱可塑性ポリウレタン(TPU)、熱可塑性オレフィン(TPO)などがある。

TPEカップ

TPEとは?TPEは安全ですか?

熱可塑性エラストマーは、2つの別個のグループの性質と特性が組み合わされて形成されている。この2つのグループとは以下のものである。

  1. 熱可塑性プラスチック(加熱すると溶ける。)
  2. エラストマー(弾性特性を示す)

さらに、これらの材料はゴム材料に似た弾性特性を示す。この特性の組み合わせは、これらの材料を押出成形、ブロー成形、射出成形を含む多くの方法で加工することを可能にするため、重要な考慮事項である。このようにして、これらの材料は効果的かつ効率的に製造される。

TPEは安全か

TPEの構造(基礎編)

一般に、熱可塑性エラストマーの基本構造には3つの区分がある。

  1. ブロック共重合体の構造
  2. ミクロ相の分離
  • 結晶部分と非晶質部分

1.ブロック共重合体の構造:

一般に、熱可塑性エラストマーは2種類のセグメントから構成されている。この2種類のセグメントまたはブロックは、ハードセグメントとソフトセグメントと呼ばれている。

ハードセグメント: TPEのハードセグメントは、TPEの機械的特性の基礎となる。その結果、これらのセグメントは熱可塑性エラストマーに強度と剛性を与えます。TPEのハードセグメントは通常、熱可塑性ブロックから構成されています。これらの熱可塑性ブロックは、結晶構造またはガラス構造を有している。

ソフト・セグメント のソフトセグメント TPE素材 は、熱可塑性エラストマーに弾性特性を与える基礎となる。熱可塑性エラストマーの主な特性は以下の通りである。

  1. 弾力性
  2. 柔軟性

その特性は、ソフトセグメントに含まれるゴム材料によって支配される。基本成分は以下の通り。

  • エチレン・プロピレン
  • ポリエチレン
  • ポリプロピレン

2.ミクロ相の分離

熱可塑性エラストマーのミクロレベルでの構造は重要である。TPEの基本的な部分であるハードセグメントとソフトセグメントには、ミクロのスケールで結合を失う傾向があります。これらのセグメントの分離は、熱可塑性エラストマーの特性と特性にとって極めて重要である。TPEの機械的特性は、この分離によって直接影響を受けます。TPEの熱可塑性相は構造的完全性を確保し、ゴム状相はTPEの弾性的性質を維持する。その結果、硬度、引張強さ、伸びなどのTPEの機械的特性の変化は、ミクロ相の分離の性質と程度によって制御されます。

  • 結晶部分と非晶質部分

TPEのハードセグメントには2つの部分がある。これらの部分は結晶領域と非晶質領域と呼ばれる。要求される特性や性質を実現するために、TPEのハードセグメントのこれらの領域は製造工程で調整されます。結晶性の部分は強度と剛性の特性を提供し、非晶性の部分は耐衝撃性と柔軟性の特性を提供します。 

TPEは安全か?

熱可塑性エラストマー はユニークな特性を持ち、製造のための加工が容易である。このような利点から、TPEの利用はさまざまな分野や産業で増加している。その結果、TPEの利用が拡大するにつれて、熱可塑性エラストマーの安全な使用に関する疑問が生じるようになった。

一般的に、熱可塑性エラストマーが適切な方法で使用され、規制基準に違反していなければ、安全であると考えられている。だから TPEは安全 熱可塑性エラストマーは、有害物質を含まず、無害であるように設計されているため、多くの用途に使用されている。しかし、熱可塑性エラストマーは特定の文脈で使用するには安全ではないという認識もある。 TPE射出成形 のページで詳細をご覧ください。

TPEの使用に関する潜在的懸念

以下は、熱可塑性エラストマーの利用に関して対処すべき潜在的な懸念事項である。

1.生体適合性

熱可塑性エラストマーは、医療分野や食品産業で容易に利用されている。食品産業ではTPEは食品容器の製造に使用され、医療分野ではさまざまな医療用インプラントの製造や医薬品包装の形成に利用されている。これらの用途の繊細さを考慮すると、このような重要な分野で使用する前に、TPEの特定の生体適合性試験を実施する必要がある。これらの特定の試験により、熱可塑性エラストマーが利用されたときに体内で有害物質を放出しないことが保証される。TPEの安全性を確保するためには、以下の2つのパラメータを慎重に実施する必要がある:

  • 適切な処方
  • 生体適合性に関する十分な試験
  • 化学添加物

このパラメータは、熱可塑性エラストマーの安全性に関して非常に重要である。この懸念はTPEの配合に関連するもので、規制限度に従って適切な検査と試験を行わなければ、危険をもたらす可能性がある。熱可塑性エラストマーには、主にその特性を向上させるために以下のような化学添加剤が含まれている。

  • スタビライザー
  • 難燃剤
  • 可塑剤

ある種の難燃剤や可塑剤がホルモンを乱す傾向があることは、言及しておくべきだろう。主にフタル酸エステルや臭素化化合物がこのカテゴリーに含まれる。これらの化学物質の悪影響は、健康問題に直結する。熱可塑性エラストマーに使用されているこれらの化学添加剤が人体にもたらすリスクを排除することが重要である。TPEに使用されている化学添加物が安全基準と規制値を完全に遵守していることを何としても保証しなければならないからである。

2.TPEのリサイクル(課題山積のプロセス)

TPEのリサイクル中に直面し、克服しなければならない課題は数多くある。その主な理由は次の2つである。

  1. TPEに使用される化学添加剤
  2. 多くの種類の製剤

一般的に、リサイクルされた熱可塑性エラストマーの品質は、新しく製造されたTPEに比べて劣っている。これは、ほとんどの場合、混合プラスチックが汚染されているためです。その結果、このような低品質のTPEは特定の用途に利用することができず、最終的には廃棄物管理の問題につながります。

3.環境への影響

熱可塑性エラストマーの原料には2種類ある。

  1. バイオベースのソース
  2. 石油ベースのソース

バイオベースのTPEの加工と栽培には、エネルギー、水、土地が必要である。しかし、これらは化石燃料への依存度が低い。一方、石油ベースのTPEの加工と抽出は、温室効果ガスの排出と化石燃料の消費に貢献する。熱可塑性エラストマーはリサイクル可能で軽量であり、加工時のエネルギー効率も高い。このような特性から、TPEは他の多くの材料に比べて環境に優しい。

TPEは環境に対して多くのソフトコーナーを提供するが、環境に悪影響を及ぼす可能性もある。これは通常、熱可塑性エラストマーの不適切な廃棄が原因で起こります。熱可塑性エラストマーには次のような有害物質が含まれている可能性があるため、これは重要な意味を持ちます。

  • 化学添加物
  • 汚染

その結果、TPEの不適切な廃棄は環境汚染につながる。

シリコンカップ

TPEの安全性に関する誤解

また、熱可塑性エラストマーは安全ではないという誤解を生む原因にもなっている。これらの誤解は、実際の懸念とはまったく異なるものである。これらの誤解は次のようなものである。

  1. 認識不足と古い情報

熱可塑性エラストマーが安全かどうかという認識を生み出す重要な要因は、意識である。この認識には、次の2つの重要なパラメータが含まれる。

  1. 様々な製品やアイテムに使用されている特定の種類のTPEに関する知識
  2. 熱可塑性エラストマーの安全性を確保するための規則や規制基準を理解すること。

そのため、上記のパラメーターに対する認識が不足すると、熱可塑性エラストマーは安全ではないという誤解を招くことになる。さらに、高分子化学と材料科学の分野では絶え間ない進歩が続いている。この進歩は、熱可塑性エラストマーの安全性プロファイルの強化・改善につながっている。TPEの安全性に関する認識は、最新で信頼できる情報に基づいていることが重要です。なぜなら、誤った情報や古い情報は、最終的に熱可塑性エラストマーの安全性に関する誤解を生み、プラスチック材料に対する不信感を生むからです。

  1. 有害物質を放出する他の素材との混同

ほとんどの場合、熱可塑性エラストマーは有害物質を放出する他の材料と混同されています。このような混同は通常、TPEと次の2つの材料の間で生じる。

  1. 熱硬化性プラスチック
  2. 熱可塑性ポリウレタン

熱硬化性プラスチックとの混同

熱硬化性プラスチックは、以下の工程で有害で危険な物質を排出する傾向がある。

  • 生産工程
  • 分解プロセス

熱硬化性プラスチックがTPEと異なる点は以下の通りである:

  1. 熱硬化性プラスチックは不可逆的な化学反応を示す
  2. 再溶解と再成形はできない

一方、熱可塑性エラストマーはまったく逆の挙動を示す。

TPEショーズ

熱可塑性ポリウレタンとの混同

ジイソシアネートにポリオール化学添加剤を加えると、熱可塑性ポリウレタンが製造される。TPUは次のような特性や性質を持つ。

  • 弾性と形状記憶
  • 回復力と柔軟性
  • 高い靭性
  • 優れた耐衝撃性
  • 耐久性の向上
  • 油やその他の汚染に対する優れた耐性
  • 極端な気象条件への耐性

熱可塑性ポリウレタンは、以下の要因に基づいて特定の化学物質を放出する傾向があります。

  • 熱可塑性ポリウレタンの配合と組成
  • 化学添加物の種類と性質

熱可塑性ポリウレタンから放出される危険で有害な物質には次のようなものがある。

  • 難燃剤
  • 可塑剤
  • スタビライザー

これらの化学物質は、野外環境に放出され、吸入または摂取された場合、人命に対する潜在的な脅威となる。こちらへ TPU射出成形 のページでTPUについてもっと知ることができる。

との混同 ポリ塩化ビニル

PVCは、いくつかの典型的な条件が存在する場合、危険な物質を放出する傾向がある。

このような状態は、以下の段階に存在する可能性がある。

  • PVCの製造工程
  • PVC使用時
  • PVC廃棄の際

PVCはしばしば熱可塑性エラストマーと混同される。このような混同は、そのほとんどが以下のようなパラメータを知らないことに基づいている。

  • 材料の安全性プロファイル
  • 素材の化学組成
  • 材料が環境に与える影響

PVCとTPEの違いを詳しく説明するために、詳細な比較と説明を以下に示す。

熱可塑性ポリウレタン、熱可塑性エラストマー、熱可塑性ポリウレタンとの比較

熱可塑性エラストマーが熱可塑性ポリウレタンとどのように違うのか、詳細な比較を以下に示す。

PVC、TPU、TPEの比較データ

ポリ塩化ビニル熱可塑性ポリウレタン熱可塑性エラストマー
毒性と可塑剤の添加。PVCの柔軟性は、フタル酸エステルを含む特定の化学物質の添加によって得られる。これらの健康問題には、主に生殖異常が含まれる。医療機器や子供のおもちゃは、これらの異常のキャリアの役割を果たしている。毒性と化学物質 添加。熱可塑性ポリウレタンは、その組成と配合にイソシアネートを含有している。これらのイソシアネートは、以下のような弊害をもたらす。

  1. 増感剤
  2. 呼吸器刺激物質

その結果、これらは人間の健康と安全を考慮した潜在的な危険因子となる。TPUの加工や製造を行う場合、これらの危険物質が放出される可能性があります。そのため、安全性を確保するために適切な安全対策を採用する必要があります。

材料科学とポリマー化学の進歩により、フタル酸エステル類を含まない熱可塑性エラストマーの設計が可能になった。このことは、フタル酸エステル類の有害な添加や毒性に関する懸念をなくすことにつながる。その結果、TPEの処方がフタル酸エステルを含まないということは、人間の生活に有害な影響を与えないことを意味する。
環境への影響有害物質の排出や廃棄物処理を考慮すると、塩ビは環境の安全性に懸念を抱かせる傾向がある。塩ビは生分解性がないという現実が重要な役割を果たしている。さらに、廃棄や製造の過程で有害物質を放出する可能性もある。環境への影響熱可塑性ポリウレタンは、廃棄の際に取り扱いを誤ると、環境に悪影響を与えがちである。熱可塑性ポリウレタンは、イソシアネートが環境中に放出されないよう、慎重にリサイクルする必要がある。熱可塑性エラストマーはリサイクル可能で、最終的には多くの用途に再利用できるため、環境への悪影響が少ない。熱可塑性エラストマーも生分解性はありませんが、一般的に環境に優しいと考えられています。
規制機関の承認PVCの使用には多くの制限が課せられている。これらの厳しい措置の根拠は、PVCに危険物質が含まれていることである。規制機関の承認熱可塑性ポリウレタンは、REACH(欧州)およびFDA(米国)の規制基準に適合しなければならない。熱可塑性エラストマーは、多くの産業や分野で使用・応用される前に、管理された試験が実施される。これらのテストは、究極の安全対策に準拠していることを確認するために、規制機関によって管理されています。

結論

熱可塑性エラストマーは多様な特性を持つことが証明され、多くの重要な分野で利用されている。一般に、TPEは、その製造が適切な方法で行われれば、多くの用途に利用しても安全であると考えられている。熱可塑性エラストマーの安全性に関して対処すべき懸念事項には、生体適合性、リサイクル時に直面する課題、環境への影響、TPEに添加される化学物質の性質などがある。これらの懸念は、製品の正しい透明性のある配合を確保し、規制機関が定めた基準を遵守し、適切な廃棄物管理を行うことで効果的に対処することができる。

熱可塑性エラストマーは、食品産業、消費財、医療分野で幅広く利用されている。中でも医療分野は、人間の健康というデリケートな要素に関わるため、最も重要な分野である。これらの用途では、熱可塑性エラストマーが無毒であることを考慮して使用されている。熱可塑性エラストマーは、機械的特性や物性を向上させるとともに、より安全性を高めることに重点を置いて研究開発が進められている。これにより、安全性を確保することで、最終的にTPEの応用範囲が広がることになる。