Archive d’étiquettes pour : nylon 6

Nylon 6_ 66. 12

Le nylon trouve sa place dans la vie quotidienne. Il a été créé en 1935 par Wallace Carothers de la société DuPont pour être utilisé dans la fabrication de bas pour femmes à la place de la soie. Mais il n'a pris son envol que pendant la Seconde Guerre mondiale et les gens ont commencé à l'utiliser à d'autres fins. Le nylon était initialement utilisé dans les parachutes, les pneus de camion, les tentes et les réservoirs de carburant. Aujourd'hui, il est devenu la fibre synthétique la plus utilisée jamais produite au monde.

Le nylon appartient au groupe des polyamides (PA). La résistance et la résilience du produit proviennent des liaisons amides. Parmi les polyamides courants, on trouve le Kevlar, le Nomex et le Pebax. Parmi tous, le Kevlar est particulièrement robuste. Il est donc largement utilisé dans la fabrication de gilets pare-balles. Le Nomex est un matériau résistant à la chaleur utilisé dans les vêtements de lutte contre les incendies. Le nylon (PA) est aujourd'hui utilisé dans divers produits en plus des vêtements et des tissus. PA6 GF30 page pour en savoir plus sur le matériau PA6.

Nylon 6/6 contre Nylon 6 contre Nylon 12

Pourquoi le nylon 6 (Pa6), le nylon 66 (Pa66) et le nylon 12 (Pa12) ne peuvent-ils pas être utilisés de manière interchangeable ?

Différents nylons sont utilisés pour différentes applications. Choisir la mauvaise qualité de nylon peut entraîner plusieurs problèmes. Voici ce que vous pouvez rencontrer :

  • Sous-performance aux températures de service : Le Nylon 6 a des points de fusion et une résistance thermique qui varient de Nylon 66 et le nylon 12. Ces différences impliquent que la résistance à la chaleur de chaque matériau diffère considérablement lorsqu'il est testé dans des conditions d'utilisation réelles. L'utilisation d'un grade de nylon dont la stabilité thermique est insuffisante risque d'entraîner des ruptures et des contaminations qui affecteront la qualité de votre application.
  • Usure prématurée : Le nylon choisi doit avoir une résistance et une flexibilité adéquates pour éviter toute défaillance dès les premières étapes de fonctionnement. L'utilisation d'une mauvaise qualité de nylon entraîne une défaillance des composants, un vice qui compromet la vie des utilisateurs finaux. De plus, certaines pannes nécessitent un processus de maintenance imprévu qui augmente les coûts et le temps perdu en production.
  • Dépenses inutiles : Il faut choisir la bonne qualité pour la bonne application. Par exemple, opter pour un matériau en nylon plus cher alors qu'un matériau moins cher le fera peut facilement faire exploser les coûts du projet. Étant donné que le nylon 6, le nylon 66 et le nylon 12 présentent des avantages et des limites particuliers distincts, la compréhension des caractéristiques spécifiques peut aider à déterminer lequel de ces matériaux conviendra à votre projet. Cela peut vous faire économiser des milliers de dollars sur la refabrication, les réparations et les remplacements.

Par conséquent, un concepteur ou un transformateur doit comprendre et comparer les différentes propriétés et performances de chaque qualité de nylon pour obtenir les meilleurs résultats dans l'application du produit.

Différentes qualités de Nylin

Les composants en plastique des moteurs de voitures sont légèrement similaires aux nylons dans le sens de l'idée. Les polyamides, connus sous le nom de nylons, sont de plusieurs types. Ceux-ci comprennent :

  • Nylon 6
  • Nylon 6/6 (Nylon 66 ou Nylon 6,6)
  • Nylon 6/9
  • Nylon 6/10
  • Nylon 6/12
  • Nylon 4/6
  • Nylon 11
  • Nylon 12/12

Le système de dénomination est associé aux atomes de carbone des matériaux de base de chacune des structures. Par exemple, le nylon 6 est dérivé du caprolactame et comprend six atomes de carbone dans ses chaînes. Le nylon 6/6 provient de l'hexaméthylène diamine avec six atomes de carbone et de l'acide adipique avec six également.

En revanche, leurs propriétés sont variables. Elles ne sont pas aussi importantes que celles des aciers, mais les différences structurelles et les additifs peuvent avoir un impact significatif sur les performances. Il existe près de 90 types différents de Nylon 11, fournis par un seul fournisseur.

Le nylon dans les plastiques techniques

Les matériaux en nylon sont appréciés pour leur grande résistance, leur grande rigidité et leur résistance aux chocs ou leur ténacité. Ces caractéristiques en font des matériaux de prédilection pour les plastiques techniques. Parmi les plus connus, on trouve les engrenages, les grilles, les poignées de porte, les roues de deux-roues, les roulements et les pignons. Ces produits sont également utilisés dans les boîtiers d'outils électriques, les borniers et les rouleaux coulissants.

Cependant, le matériau peut présenter un inconvénient. En effet, il absorbe l'humidité, ce qui altère à la fois les propriétés et les dimensions du tissu. Ce problème est réduit en renforçant le nylon avec du verre, ce qui permet d'obtenir un matériau solide et résistant aux chocs. moulage par injection de nylon page pour en savoir plus sur cette matière plastique.

Les nylons résistants à la chaleur trouvent progressivement leur place dans des applications telles que le remplacement des métaux, des céramiques et d'autres polymères. Ils sont utilisés dans les moteurs automobiles et les industries pétrolières et gazières. Le nylon 6 et le nylon 6/6 sont généralement choisis en raison de leur prix relativement bas et de leur grande résistance à l'usure. Le nylon est-il sûr ? page pour en savoir plus sur le matériau nylon.

Caractéristiques du nylon 6/6

Formule chimique : [−NH−(CH2)6−NH−CO−(CH2)4−CO−]n

Nylon 66

Le nylon 6/6 d'origine est généralement le moins cher. C'est pourquoi il est très populaire. Le nylon 6/6 est souvent utilisé en Allemagne pour des raisons historiques liées à l'approvisionnement. Le nylon 6/6 a une bonne résistance aux températures élevées et à l'humidité et est assez solide à tous les niveaux de température et d'humidité. Il offre également une résistance à l'abrasion et une faible perméabilité à l'essence et aux huiles.

De plus, le nylon 6/6 présente des conséquences négatives. Il absorbe rapidement l'humidité et cet effet réduit la résistance aux chocs et la ductilité lorsque le polymère est sec. Il est également très sensible aux UV et à la dégradation oxydative. Cependant, le nylon 6/6 présente une résistance inférieure aux acides faibles par rapport aux types tels que le nylon 6/10, 6/12, 11 ou 12. En outre, le nylon 6/6 est encore largement utilisé dans les composants électriques en raison des progrès réalisés en matière de résistance au feu. Il remplace également le métal dans les outils à main moulés sous pression.

Propriétés du Nylon 6

Formule chimique : [−NH−(CH2)5−CO−]n

Nylon 6

Le nylon 6 présente plusieurs propriétés. Ces caractéristiques exceptionnelles le distinguent des autres qualités de nylon et des produits similaires du marché. Le nylon 6 présente une très bonne élasticité, accompagnée d'une résistance à la traction très élevée. Cela le rend encore plus précieux car il ne réagit ni avec les alcalis ni avec les acides.

De plus, le nylon 6 offre également une protection adéquate contre différents types d'abrasion. Son point de fusion est de 220 ℃. La température de transition vitreuse peut être ajustée à 48 ℃. Les filaments de nylon 6 ont une surface sans relief qui pourrait être comparée à celle du verre. Une autre propriété exceptionnelle de ce matériau est sa capacité à gonfler et à absorber jusqu'à 2,41 TP5T d'eau. Ces propriétés rendent le nylon 6 utile dans l'automobile, l'aérospatiale, les cosmétiques et les produits de consommation.

Applications du Nylon 6

Le nylon 6 est largement utilisé dans les cas où le matériau doit avoir une résistance élevée, une résistance aux chocs et une résistance à l'usure. Sa polyvalence le rend adapté pour :

  • Brins : fibres
  • Nettoyage : Poils de brosse à dents
  • Strumming : cordes et médiators pour guitare
  • Mécanisme : Engrenages
  • Serrure : Loquets de panneau
  • Blindage : Isolation des circuits
  • Coque : Boîtier d'outil électrique
  • Encart : Implants médicaux
  • Couverture : Films, emballages et conditionnements

Avantages du Nylon 6

Plusieurs avantages font du nylon 6 un excellent choix pour des utilisations spécifiques :

  • Il offre une très grande rigidité et une bonne résistance à l'abrasion.
  • Le nylon 6 convient aux opérations de moulage par injection.
  • Ce matériau est particulièrement performant dans les applications où une résistance aux chocs est requise.
  • Il est flexible pour reprendre sa forme initiale après avoir été déformé.
  • Le nylon 6 possède de bonnes propriétés de teinture et la capacité de conserver ces couleurs.

Inconvénients du Nylon 6

Malgré ses avantages, le nylon 6 présente quelques inconvénients :

  • Son point de fusion est bas par rapport aux autres matériaux, soit 220 ℃.
  • En raison de sa propriété hygroscopique, il a tendance à absorber l’humidité de l’air et de l’atmosphère environnante.
  • Les températures élevées et la lumière réduisent sa résistance et sa structure ; il n'est donc pas adapté à une utilisation dans de telles conditions.
  • Le nylon 6 n'est pas immunisé contre les rayons UV et, par conséquent, des caractéristiques telles que la couleur et la résistance sont connues pour se dégrader lorsque le matériau est exposé au soleil.

Comparaison entre le Nylon 6 et le Nylon 6/6

Chimiquement, le Nylon 6/6 a une meilleure résistance au chlorure de calcium ainsi que de meilleures propriétés de résistance aux intempéries. De plus, il a un HDT plus élevé que le Nylon 6. Cependant, il a été prouvé que tous les nylons sont affectés par la dégradation lorsqu'ils entrent en contact avec l'essence éthanol 15%.

Lors de la sélection du matériau en nylon, il existe des outils de sélection de matériaux tels que UL Prospector qui peuvent être utilisés pour répondre aux propriétés de l'application prévue. D'autres choix connexes tels que les acétals et les polyesters thermoplastiques doivent être pris en compte lors du choix.

Nylon 12 (PA 12) : un matériau performant doté d'une structure unique

[−NH−(CH2)11−CO−]n

Nylon 12

Le nylon 12 (PA 12) est le matériau le plus couramment utilisé dans les procédés d'impression SLS et Multi Jet Fusion. Il s'agit d'un polyamide aliphatique qui présente une structure ouverte avec un squelette en carbone aliphatique contenant exactement 12 carbones dans son squelette polymère. Le PA 12 présente une résistance élevée aux produits chimiques, au sel et à l'huile selon les spécifications du tableau ci-dessous. Il a un point de fusion inférieur d'environ 180 °C (356 °F) mais reste un matériau très utile.

Comme le PA 11, il a moins tendance à absorber l'humidité, ce qui le rend stable dans différents climats. Le PA 12 est proposé en noir et blanc et l'ajout de charges de verre et de minéraux améliore les caractéristiques mécaniques et thermiques. Il est largement utilisé dans les boîtiers d'impression, les fixations, les cathéters et les systèmes de carburant des automobiles.

Le PA 12 est également biocompatible et permet de fabriquer des composants médicaux adaptés. Outre son utilisation médicale, il est utilisé dans les emballages cosmétiques, les connexions électriques et de nombreux autres produits industriels.

Tableau pour Nylon 6/6 vs Nylon 6 vs Nylon 12 :

Propriété Nylon 6 Nylon 66 Nylon 12
Résistance aux hydrocarbures Modéré Supérieur Excellent
Rétrécissement du moule Rétrécissement inférieur Rétrécissement plus élevé Rétrécissement minimal
Résistance aux chocs Supérieur Modéré Haut
Facilité de coloration Couleur brillante Moins accrocheur Modéré
Vitesse d'absorption de l'eau Haut Modéré Faible
Potentiel de recyclabilité Supérieur Modéré Haut
Mobilité moléculaire Haut Inférieur Modéré
Récupération élastique Supérieur Modéré Haut
Affinité des colorants Supérieur Modéré Haut
Cristallinité Plus Moins Moins
Température de déflexion thermique 180°C – 220°C 250°C – 265°C ~ 180°C
Point de fusion 215°C – 220°C 250°C – 265°C 175°C – 180°C
Résistance aux acides chimiques Modéré Supérieur Excellent
Rigidité Modéré Supérieur Flexible
Solidité des couleurs Supérieur Modéré Haut
Résistance à la température Haut Supérieur Modéré
Capacité de nettoyage Modéré Supérieur Excellent
Module d'élasticité Supérieur Modéré Haut
Structure interne Moins compact Plus compact Moins compact
Formation de polymérisation Anneau ouvert (caprolactame) Condensation (Hexaméthylènediamine + Acide adipique) Condensation (Laurolactame)
Récupération d'humidité 4% – 4.5% 4% – 4.5% ~ 0.4%
Exigences relatives aux monomères 1 (Caprolactame) 2 (Hexaméthylènediamine + acide adipique) 1 (Laurolactame)
Densité 1,2 g/ml 1,15 g/ml 1,01 g/ml
Degré de polymérisation ~200 60 – 80 ~100

Nylons et résistance aux UV

Les nylons sont également très sensibles aux rayons ultraviolets (UV). Leur suspension expose leur structure à la dégradation au fil du temps. L'utilisation de stabilisants dans les formulations de nylon augmente leur capacité à résister à la dégradation par les UV. Le nylon 6/6 est particulièrement vulnérable à ces rayons tandis que le nylon 6 présente des risques potentiels de dégradation s'il n'est pas renforcé par des additifs appropriés.

La lumière UV excite certains électrons dans les liaisons chimiques qui forment les polymères de nylon. Cette interaction cible les électrons pi et brise la double liaison et les systèmes aromatiques, offerts par la tutelle de Bowe. Par exemple, le nylon 6 est connu pour avoir une bonne résistance aux UV au niveau de sa liaison amide et est donc susceptible de se dégrader. Par exemple, les polymères de polyéthylène qui n'ont pas d'électrons pi sont plus résistants aux rayons UV que les autres polymères.

Tous les matériaux se dégradent en raison de l'exposition aux UV, pas seulement le nylon. Néanmoins, lorsque des stabilisateurs sont incorporés, le nylon peut être utilisé dans des applications caractérisées par une utilisation en extérieur. Par exemple, les mini-rivets à pression fabriqués en nylon 6/6 sont adaptés à une utilisation en extérieur. Ces rivets sont classés ignifuges UL94 V-2 pour leur résistance au feu et leur fonctionnalité dans divers environnements.

Pour optimiser les performances des produits en nylon, ceux-ci sont généralement exposés au soleil et sont soumis à des stabilisateurs UV. Ces additifs aident à absorber ou à réfléchir les rayons ultraviolets qui sont nocifs pour les pièces en nylon, augmentant ainsi la durée de vie des pièces en nylon. Le choix de ces stabilisateurs est donc fait de manière à offrir les meilleures performances tout en n'affectant pas les propriétés mécaniques.

Pour résumer, le nylon est intrinsèquement sensible à l'action des UV, mais des améliorations avec des stabilisateurs sont possibles. La connaissance de l'effet de la lumière UV sur le nylon peut aider à éviter de choisir le mauvais matériau pour les applications qui seront exposées à l'environnement extérieur. Parfois, pour augmenter la résistance, nous ajouterons de la fibre de verre au nylon pour le fixer ensemble afin de fabriquer des pièces moulées en nylon, celles que nous appelons moulage par injection de nylon chargé de verre parties.

Analyse des performances du nylon 6, du nylon 66 et du nylon 12

Le nylon 6 présente une très grande résistance à l'humidité. Il présente une résistance élevée aux chocs et à la fatigue par flexion. Le nylon 6 nécessite des températures de traitement plus basses que le nylon 66. De plus, sa nature amorphe signifie également que ses moules ont moins de rétrécissement que leurs homologues cristallins. Cependant, il est également possible d'obtenir des qualités de nylon 6 entièrement transparentes pour des utilisations particulières. Cependant, ce nylon gonfle et absorbe l'humidité à des taux plus élevés, ce qui le rend dimensionnellement instable. Certains de ces défis peuvent être surmontés en alliant le polymère avec du polyéthylène basse densité. Certaines des utilisations du nylon 6 sont par exemple les sièges de stade et les bas. D'autres utilisations incluent les grilles de radiateur et les fils industriels. En outre, les fibres de brosse à dents et les protections de machines sont également produites à partir de nylon 6.

De tous les types de nylon, le nylon 66 est réputé pour être le plus couramment utilisé. Il possède une résistance élevée dans une gamme de températures. Ce type démontre une résistance élevée à l'abrasion et une faible perméabilité. Ce matériau est très résistant aux huiles minérales et aux réfrigérants. La résistance chimique au chlorure de calcium saturé est également un avantage. De plus, il présente également de bonnes caractéristiques de résistance aux intempéries dans ce nylon. Le plus souvent, le nylon 66 rivalise avec les métaux dans les corps et les cadres d'outils moulés sous pression. Ce nylon peut également être utilisé dans des conditions humides. Cependant, la résistance aux chocs est faible, tout comme la ductilité. Certaines des utilisations sont les roulements à friction, les câbles de pneus et les airbags automobiles.

Le nylon 12 présente des avantages différents par rapport aux autres matériaux. Il présente une bonne résistance chimique dans cette application, améliorant ainsi la durée de vie du matériau. Les taux d'absorption d'humidité sont également relativement faibles, ce qui le rend dimensionnellement stable. Le nylon 12 est utilisé dans l'impression 3D et les pièces automobiles. De plus, ce nylon est utilisé dans les tubes flexibles et les composants médicaux. Pour ces raisons, le nylon 12 est devenu un matériau polyvalent pouvant être utilisé dans de nombreuses industries. Cependant, le nylon 12 présente des avantages différents par rapport au nylon 6 et au nylon 66 en fonction de l'application requise.

Comparaison des applications du nylon 6, du nylon 66 et du nylon 12

Cet article se concentre sur l'application de deux types de nylons, le nylon 6 et le nylon 66. Les caractéristiques de ces nylons ont un grand impact sur leurs applications dans plusieurs industries.

Le nylon 6 a un point de fusion plus bas et une bonne aptitude au traitement. Il est donc adapté à la fabrication de textiles légers et d'autres pièces industrielles. Le nylon 6 fabriqué par moulage par injection de nylon est largement utilisé. Ce matériau convient au moulage de différentes pièces telles que les garnitures intérieures d'automobiles, les pièces d'appareils électroménagers et les articles de sport.

Le Nylon 6 présente également l'avantage d'être élastique et de résister à l'usure. Ces caractéristiques le rendent adapté aux textiles tels que les chaussettes et les vêtements de sport.

D'autre part, le Nylon 66 est apprécié pour son point de fusion plus élevé ainsi que pour ses propriétés mécaniques améliorées. Cela le rend plus adapté à une utilisation dans des systèmes où des températures et des propriétés mécaniques intenses sont nécessaires.

Dans les procédés de moulage par injection de nylon, le nylon 66 est privilégié pour la fabrication de produits résistants à l'usure. Parmi les applications possibles figurent les plastiques techniques, les composants de moteurs automobiles et les gadgets électroniques.

De plus, la stabilité à haute température du Nylon 66 le rend adapté aux applications dans les secteurs de l'automobile et de l'aérospatiale. Cela implique que sa résistance dans de telles conditions le rend encore plus précieux dans les applications qui doivent répondre à des normes élevées.

Le nylon 12 complète ces matériaux avec les caractéristiques suivantes. Connu pour sa résistance aux produits chimiques, le nylon 12 trouve des applications dans des applications autonomes telles que les réservoirs de carburant, les applications médicales, etc. Un autre avantage est qu'il peut rester dimensionnellement stable dans différents climats, ce qui sera utile dans différents domaines.

Ainsi, chaque type de nylon présente des avantages uniques qui s'adaptent aux différents besoins du marché. Le type de nylon à utiliser dépend de l'application prévue et des conditions dans lesquelles le matériau sera utilisé.

Autres qualités de nylon courantes

Différentes qualités de nylon sont produites et chacune d'entre elles est utilisée pour un usage particulier. Le nylon 610 et le nylon 612 ont une très faible absorption d'humidité et sont donc utilisés pour l'isolation électrique. Ils ont des caractéristiques plus avantageuses, mais ils sont plus coûteux par rapport aux matériaux conventionnels. Caractérisé par une faible absorption d'humidité, le nylon 610 a une température de transition vitreuse relativement basse pour les applications sensibles.

Cependant, en raison de ses caractéristiques flexibles, le nylon 612 remplace progressivement le nylon 610. Ce changement est principalement dû au fait que le prix du nylon 612 est inférieur à celui du nylon 6 et du nylon 66. Sa résistance supérieure à la chaleur augmente sa demande et il est largement utilisé dans la plupart des industries.

En raison de leurs propriétés, le Nylon 612 est généralement connu pour être légèrement inférieur au Nylon 6 et au Nylon 66. Il présente une capacité améliorée à résister au fluage dans les environnements humides, ce qui augmente son applicabilité.

Les deux types de nylon sont le nylon 11 et le nylon 12, ce dernier ayant le taux d'absorption d'humidité le plus faible parmi tous les types de nylon non chargés. Ces nylons présentent une stabilité dimensionnelle améliorée et présentent également une résistance aux chocs et à la flexion supérieure à celle des nylons 6, 66, 610 et 612. Cependant, ils sont chers, plus fragiles et ont une température de service maximale inférieure à celle de leurs homologues travaillés à froid.

En général, le Nylon 11 et le Nylon 12 présentent certains avantages par rapport aux autres membres de la famille du nylon, notamment parce qu'ils présentent des performances exceptionnelles en termes de résistance aux intempéries. Cependant, ils sont menacés par de nouveaux nylons ultra-résistants développés pour de meilleures performances.

Un autre est le Nylon 1212 qui est supérieur au Nylon 6 et au Nylon 66 et plus économique que le Nylon 11 ou le Nylon 12. Il est utilisé dans de nombreux domaines en raison de ses performances équilibrées et de ses prix raisonnables.

À haute température, le nylon 46 présente une résistance élevée aux chocs ainsi que des niveaux modérés de taux de fluage. De plus, il présente un module plus élevé et une meilleure résistance à la fatigue que le nylon 66. Cependant, sa fenêtre de traitement est plus petite que celles du nylon 6T et du nylon 11, ce qui peut affecter son utilisation dans certains environnements de traitement.

Ces qualités de nylon présentent donc des caractéristiques uniques qui les qualifient pour diverses utilisations dans l'industrie. L'analyse de chaque matériau montre que les forces, les faiblesses, les opportunités et les menaces sont le résultat de la formulation et de l'application du matériau.

Conclusion

L'utilisation du nylon 6, du nylon 66 et du nylon 12 dépend de l'application spécifique dont on a besoin. Il présente une bonne flexibilité et une bonne résistance aux chocs et convient donc à la fabrication de composants légers. Le nylon 66 a plus de résistance et de stabilité à la chaleur, et le nylon 6 fonctionne bien dans les applications sous contrainte. Le nylon 12 est actuellement utilisé dans les applications extérieures en raison de sa faible absorption d'humidité et de son excellente résistance aux intempéries, mais il est légèrement cher.

Comprendre les propriétés de chacun nylon grade vous aidera à sélectionner le bon matériau qui fournira les performances dont vous avez besoin ainsi que le coût souhaité. Cela se traduit par des résultats plus durables et plus efficaces dans l'application.

Qu'est-ce que le PA66 30 GF

Les gens recherchent continuellement des matériaux plus flexibles et plus durables. Plastique PA6 GF30 est un excellent exemple de ce type de matériau, dont beaucoup moulage par injection de nylon Les pièces sont fabriquées en matière plastique PA66 GF30. Il est utilisé dans diverses industries depuis 1930 et constitue une solution adaptable pour tout, des pièces automobiles aux biens de consommation.

Alors, pourquoi existe-t-il une telle demande pour le PA6 GF30 ? Tout d’abord, ce matériau est incroyablement plus résistant que les polymères classiques. Ensuite, il est durable et dure plus de 40 à 50 ans, selon les conditions favorables. Les ingénieurs préfèrent généralement ce matériau en raison de sa capacité à supporter de lourdes charges. De plus, la fibre de verre 30% rend ce matériau plus rigide et plus robuste que le PA6 classique.

Dans le monde en constante évolution d'aujourd'hui, le PA6 GF30 se démarque. Il répond au besoin toujours croissant de matériaux légers et résistants capables de supporter des conditions difficiles. Les industries sont constamment à la recherche de solutions à la fois efficaces et efficientes. Le PA6 GF30 répond à la plupart de leurs exigences !

Le besoin de produits comme le PA6 GF30 ne cesse de croître à mesure que la technologie s'améliore. Ce texte vous explique tout ce que vous devez savoir sur le nylon 6 chargé de verre. Vous découvrirez également les différents types de PA6 GF30 et en quoi ils se distinguent. Cet article est particulièrement utile pour les personnes qui fabriquent des produits, les vendent ou qui s'intéressent aux affaires.

pa6 gf30

Qu'est-ce que le matériau PA6 GF30 ?

Le plastique PA6 GF30 est l'un des types les plus courants de la catégorie des nylons 6 chargés de verre. Le nom comporte deux termes, « PA6 » et « GF30 ». Le nylon est-il sûr ? et moulage par injection de nylon chargé de verre page pour en savoir plus.

PA6 signifie Poly-Amide, un type de nylon. Plus précisément, le PA6 GF30 est un type spécial de nylon renforcé par des fibres de verre. Si vous examinez la structure chimique d'un « PA6 », vous trouverez un polymère de caprolactame. Cependant, le terme « GF30 » indique que le 30% du matériau provient généralement de fibres de verre.

Les ingénieurs et les développeurs préfèrent le PA6 GF30 car il est solide et durable. La structure en polycaprolactame offre normalement des propriétés mécaniques et une résistance à l'usure. D'autre part, les fibres de verre améliorent la résistance et la rigidité du nylon. Par conséquent, le PA6 GF30 est beaucoup plus résistant que le PA6 classique. Pour information : les fibres de verre ajoutées aident généralement le matériau à résister à la déformation. De plus, elles améliorent les performances du matériau PA6 GF30 sous forte contrainte.

Le nylon 6 chargé de verre offre plus de résistance que le PA6 classique. C'est pourquoi les gens préfèrent le nylon 6 chargé de verre au matériau PA6 standard. Les matériaux PA 6 sont souvent utilisés dans les produits textiles et de consommation. D'autre part, le PA6 GF30 est un choix privilégié pour l'industrie automobile et électronique. Vous pouvez généralement le trouver utilisé dans la fabrication de boîtiers, de supports et de pièces structurelles.

Propriétés et avantages d'une fibre de verre PA6 GF30

La structure unique du nylon 6 chargé de verre offre de nombreux avantages par rapport au PA6 classique. L'ajout de fibre de verre 30% est principalement responsable de toutes ces propriétés supérieures. Pour cette raison, la pièce PA6 GF30 est largement répandue dans de nombreuses industries.

Dans cette section, vous examinerez spécifiquement chaque propriété et découvrirez pourquoi le nylon 6 chargé de verre est un matériau approprié.

Propriétés mécaniques améliorées

Le plastique PA6 GF30 offre une résistance à la traction supérieure. Étant donné que ce matériau utilise de la fibre de verre, vous devez compter deux valeurs de résistance à la traction. Tout d'abord, la résistance à la traction le long de la fibre est de 175 MPa. Deuxièmement, la résistance à la traction perpendiculaire à la fibre est de 110 MPa. En revanche, le PA6 standard n'offre que 79 MPa. Le nylon-6 chargé de verre offre une résistance à la traction supérieure.

Les pièces en plastique PA6 GF30 offrent en outre des performances de rigidité supérieures. Le matériau PA6 GF30 a une densité de 1,36 g/cm³, supérieure à celle du PA6 ordinaire de 1,14 g/cm³. Par conséquent, le PA6 GF30 est particulièrement adapté aux applications nécessitant rigidité et stabilité.

De plus, le matériau en nylon 6 chargé de verre est plus dur que le matériau PA6 standard. En général, le PA6 GF30 offre une dureté D86 le long de la fibre et D83 perpendiculairement à la fibre. Cependant, le PA6 offre une dureté inférieure, qui est D79. Par conséquent, le PA6 GF30 est idéal pour les applications à fort impact.

Enfin, le matériau chargé de verre offre une vitesse de fluage plus faible. La vitesse de fluage correspond généralement à la vitesse à laquelle le matériau change de forme sous une pression constante. Notez qu'un matériau est plus stable si sa vitesse de fluage est faible. Des situations similaires peuvent être observées dans le matériau PA6 GF30. De plus, ce nylon est idéal pour les applications à forte charge en raison de sa stabilité supérieure dans le temps.

Pièces moulées en PA gf30

Propriétés thermiques du PA6 GF30

Le PA6 GF30 offre également des propriétés thermiques exceptionnelles. L'un de ses principaux avantages est son faible taux de dilatation thermique. Le nylon 6 chargé de verre offre une dilatation de 23 à 65 par 10⁻⁶/K. Par rapport au PA6, il est bien inférieur à 12 à 13 par 10⁻⁵/K.

Ces valeurs montrent que le matériau PA6 GF30 se dilate ou se contracte très peu en fonction des variations de température. C'est pourquoi le PA6 GF30 est fiable dans de nombreuses applications.

Une autre caractéristique importante est sa stabilité supérieure lorsqu'il est exposé à des changements de température. Le PA6 GF30 reste stable même en cas de changements fréquents de température. Cependant, le PA6 ne peut pas offrir une telle stabilité. Par conséquent, le PA6-GF30 est largement utilisé dans les environnements automobiles et industriels.

Le PA6-GF30 offre également une résistance élevée à la chaleur. Il fonctionne généralement sans problème à des températures allant de -40 à 220 degrés (C), tandis que le PA ne fournit que jusqu'à 150 degrés (C). Par conséquent, le PA6-GF30 offre une température nominale plus élevée que le matériau PA6 conventionnel. Pour cette raison, le nylon-6 chargé de verre est idéal pour les composants de moteur et les boîtiers électroniques.

De plus, vous pouvez également tenir compte des charges statiques élevées à haute température. Une charge statique est une charge constante ou inchangée appliquée à un corps. Les pièces en PA6-GF30 peuvent supporter des charges statiques élevées même à haute température. Ces avantages particuliers font de ce matériau un matériau répandu dans l'aérospatiale et de nombreuses applications industrielles.

Amortissement mécanique et résistance à la fatigue

Le matériau PA6 GF30 est également excellent en termes de résistance à la fatigue et d'amortissement mécanique. Une excellente résistance à la fatigue signifie que le matériau peut supporter des charges répétées sans défaillance. Dans de nombreuses applications, la machine est souvent confrontée à des contraintes cycliques. Dans ce cas, un matériau PA6 GF30 pourrait être un choix idéal.

L'amortissement mécanique, quant à lui, fait référence à l'efficacité avec laquelle votre substance absorbe les vibrations. Cette caractéristique est appropriée pour les applications liées aux vibrations. Lorsque la vibration se produit, la pièce PA6-GF30 libère de l'énergie et réduit le bruit et l'usure.

Maintenant, envisagez de combiner ces deux caractéristiques dans un seul matériau. La pièce PA6-GF30 est très pratique pour cela.

Propriétés chimiques du PA6 GF30

Comme vous le savez, le matériau plastique PA6-GF30 contient de la fibre de verre 30%. Cette combinaison améliore de nombreuses propriétés, notamment les propriétés chimiques. Grâce à l'ajout de fibre de verre, la pièce PA6-GF30 devient plus résistante aux produits chimiques.

En général, il peut résister aux huiles, aux graisses et aux solvants. Cependant, il peut ne pas convenir aux acides et aux bases fortes. Par conséquent, il est principalement résistant aux produits chimiques à base de pétrole. Pour cette raison, ce matériau est largement utilisé dans l'automobile et dans de nombreuses applications industrielles.

Une autre excellente propriété du PA6-GF30 est sa résistance au vieillissement et à l'usure. Ce matériau conserve ses performances au fil du temps, même dans des environnements difficiles. Il ne se décompose pas facilement lorsqu'il est exposé aux rayons UV ou à l'humidité, ce qui contribue à la durée de vie de la pièce.

Propriétés électriques du PA6 GF30

Enfin, l'introduction de fibres de verre améliore les caractéristiques électriques du matériau plastique PA6-GF30. Ce matériau offre une isolation électrique de 1E12 à 1E10 Ω, tandis que le PA6 ne possède que 1E14 Ω. Vous pouvez constater que le matériau PA6 standard offre une isolation supérieure à celle du PA6-GF30.

En ce qui concerne la rigidité diélectrique, le matériau PA6 offre également un meilleur résultat. Le matériau plastique PA6-GF30 offre une résistance de 5 à 12 kV/mm, tandis que le PA6 offre une valeur plus élevée de seulement 32 kV/mm. Bien que la valeur du nylon-6 chargé de verre soit inférieure, il assure toujours une meilleure isolation.

Autres avantages du PA6 GF30

Un PA6-GF30 offre d'autres avantages en plus de ceux mentionnés ci-dessus. Les trois avantages suivants sont les plus importants pour vos intérêts commerciaux.

Rentabilité

Le PA6 GF30 offre une solution économique par rapport aux métaux. Il conserve d'excellentes performances mécaniques tout en réduisant les dépenses en matériaux. Pour cette raison, le nylon-6 chargé de verre est un excellent choix pour les entreprises qui souhaitent économiser de l'argent sans diminuer la qualité de leurs produits.

Alternative légère aux métaux

L'un des avantages du PA6 GF30 est qu'il est très léger. Même s'il n'est pas aussi lourd que le métal, il reste très solide. Ce matériau est particulièrement nécessaire pour les applications qui nécessitent une meilleure efficacité énergétique. On peut observer des applications typiques dans les secteurs de l'automatisation et de l'aérospatiale.

Résistance à la corrosion

Contrairement aux métaux, la pièce PA6-GF30 ne rouille pas. Par conséquent, ce matériau peut être une excellente alternative au métal. Il offre une durée de vie plus longue dans des environnements corrosifs. De ce fait, vous n'avez pas nécessairement besoin de remplacer les pièces fréquemment. Cet avantage particulier est particulièrement nécessaire pour les applications extérieures et chimiques.

matériau de moulage par injection

 

 

Limitations du matériau PA6 GF30

Bien que le plastique PA6 GF30 offre de nombreux avantages, il présente également certaines limites. L'un des principaux inconvénients est sa fragilité par rapport au PA6 pur. L'ajout de fibre de verre 30% le rend moins flexible. De ce fait, le matériau PA6-GF30 n'est pas adapté aux applications impliquant une flexion. Cette flexibilité réduite peut provoquer des fissures sous de lourdes charges.

Un autre problème est que le PA6-GF30 a tendance à absorber l'eau. La partie PA6-GF30 peut retenir l'eau, comme tous les polyamides. Cette absorption d'eau peut rendre le polyamide plus faible ou moins rigide. Cela peut également modifier la durée de vie du produit en général. Vous pouvez utiliser des revêtements spéciaux pour surmonter ces problèmes.

Comment est fabriquée la pièce PA6 GF30 ?

Le plastique PA6-GF30 est un matériau très résistant et durable. L'ajout de fibre de verre 30% rend généralement le matériau encore plus résistant. La fabrication de ce matériau nécessite plusieurs étapes, chacune essentielle pour garantir sa qualité. Cette section vous guidera tout au long du processus, de la sélection du matériau au produit final.

Bien que vous connaissiez l'ensemble du processus, il est tout aussi important de connaître le contrôle qualité. Ces formalités sont soigneusement respectées dans chaque usine. Les usines renommées, comme Sincere Tech, utilisent toujours divers outils pour surveiller la qualité des matériaux à chaque étape. Même après la production, elles utilisent diverses machines de test pour garantir la qualité.

Étape #1 : Sélection des matériaux

La première étape de la création d'une pièce en PA6-GF30 consiste à obtenir les matières premières appropriées. Comme son nom l'indique, le polyamide 6 (PA6) est le composant principal. Nous avons déjà évoqué ce type de nylon, réputé pour sa résistance, sa flexibilité et sa résilience.

Le matériau secondaire est constitué de fibres de verre, qui seront nécessaires pour renforcer le nylon ultérieurement. Pour la pièce PA6-GF30, la teneur en fibres de verre représente 30% du poids total du matériau. Cet équilibre offre généralement les avantages que nous avons mentionnés dans la section précédente.

L'ensemble du processus est essentiel à la fabrication du matériau en nylon 6 chargé de verre. L'ajout de fibres de verre nécessite des techniques d'ajout appropriées pour garantir un produit de la meilleure qualité.

Les usines s'approvisionnent d'abord en granulés de PA6 et en fibres de verre hachées de haute qualité. Cette étape est essentielle pour garantir l'utilisation de matières premières de haute qualité afin de garantir la qualité des produits finis. Les usines peuvent également utiliser d'autres additifs pour améliorer la résistance aux UV, aux flammes ou à la chaleur.

Étape #2 : Polymérisation du PA6

Une fois les matières premières sélectionnées, elles sont envoyées dans la chambre de polymérisation. La polymérisation est un processus qui permet de créer une chaîne polymère à partir de monomères. Concernant le PA6-GF30, les monomères de caprolactame sont polymérisés pour former de longues molécules de polyamide.

Un réacteur chauffe le caprolactame pour que le processus de polymérisation puisse avoir lieu. À l'intérieur du réacteur, la température peut atteindre 250 degrés Celsius. La température élevée crée un processus chimique qui permet aux monomères de se joindre pour former une longue chaîne de polymères PA6.

Pendant ce temps, l'eau et les autres résidus du matériau sont éliminés. Cela garantit que le polymère est pur et possède les propriétés souhaitées. Ensuite, le processus refroidit le polyamide nouvellement formé et crée de petits granulés ou pastilles. Plus tard, le processus évacue ces pastilles vers une autre chambre pour l'étape suivante de la production.

Étape #3 : Mélange du PA6 et de la fibre de verre

Une fois le PA6 polymérisé, le procédé consiste à ajouter les fibres de verre au matériau. Ce processus d'ajout est généralement appelé compoundage. Le polyamide nouvellement formé est fondu à une température de 240 à 270 degrés Celsius au cours de cette étape.

Le procédé consiste ensuite à mélanger les fibres de verre hachées au PA6 fondu. Pour ce faire, il utilise une extrudeuse à double vis, qui garantit que les fibres de verre sont réparties uniformément dans le polymère.

L'étape de composition est l'une des étapes les plus critiques. Au cours de ce processus, les matériaux acquièrent généralement une résistance et des performances supérieures. Par conséquent, chaque usine doit contrôler soigneusement ce processus pour éviter d'endommager les fibres de verre.

Étape #4 : Refroidissement et granulation

Après l'étape de mélange, le nylon-6 chargé de verre chaud doit être refroidi. Ce processus nécessite une pièce pour le refroidissement. Le refroidissement par air ou par eau peut être disponible, mais les gens préfèrent souvent les systèmes de refroidissement par air. Le nylon-6 fondu avec du verre durcit lorsqu'il refroidit et forme des palettes. C'est pourquoi ce processus est connu sous le nom de pelletisation.

Les granulés PA6-GF30 sont maintenant prêts à être moulés en pièces. Ils sont emballés et stockés ou immédiatement envoyés à l'étape suivante du processus de fabrication.

Étape #5 : Transformation en pièces

L'étape finale consiste à créer le véritable composant PA6-GF30. L'injection et l'extrusion sont deux méthodes courantes pour produire divers produits en nylon-6 chargé de verre. Le type approprié est souvent déterminé par la complexité de la pièce que vous souhaitez fabriquer.

Le procédé de moulage par injection est souvent adapté aux pièces complexes. Au cours de cette étape, le PA6 GF30 est fondu et pressé dans un moule, qui donne au matériau la forme souhaitée. Une fois refroidi, l'article est démoulé. Enfin, après les tests, la pièce en PA6-GF30 est prête à être utilisée dans l'application prévue.

Le procédé d'extrusion, en revanche, est idéal pour produire des pièces simples. Il produit des profilés longs avec une section transversale égale. Dans ce scénario, une machine d'extrusion est utilisée. Le processus commence par l'alimentation de la trémie. La machine chauffe ensuite les palettes d'alimentation en PA6-GF30 jusqu'à ce qu'elles fondent en liquide. Plus tard, le nylon-6 chargé de verre fondu est poussé à travers une matrice. La pièce en PA6-GF30 devient des pièces longues et continues. Vous pouvez ensuite les couper à la longueur souhaitée.

Enfin, la pièce PA6-GF30 nouvellement créée est envoyée aux contrôles de qualité. C'est à ce moment-là que les usines préparent les certifications nécessaires.

Application de la pièce PA6-GF30

Vous connaissez désormais le matériau PA6 GF30 et son procédé de fabrication. Vous connaissez également désormais ses nombreux avantages. En raison de ces avantages, ce matériau est largement utilisé dans de nombreuses industries.

Le marché du polyamide connaît une forte demande depuis dix ans. Selon diverses études de marché, cette taille vaut 8,3 milliards USD. Elle devrait croître à un taux de croissance annuel composé de 6% et atteindra 14,26 milliards USD en 2031.

Industrie automobile

L'industrie automobile utilise largement des matériaux chargés de verre pour créer diverses pièces automobiles. Parmi les pièces les plus courantes, on trouve :

  • Couvercles de moteur
  • Collecteurs d'admission d'air
  • Boîtes à pédales
  • Réservoirs d'extrémité de radiateur
  • Capot de capot
  • Essuie-glace de voiture
  • Roue motrice
  • Poignée de vélo

Électricité et électronique

Dans l'industrie électronique également, le composant PA6-GF30 est très répandu. Parmi les composants électriques courants, on trouve :

  • Presse-étoupes
  • Boîtiers d'interrupteurs
  • Composants du disjoncteur
  • Connecteurs électriques
  • Coque pour outil électrique
  • Pale de ventilateur
  • Connecteur
  • Prise, boîte à fusibles, puces de bornes et bien plus encore.

Biens de consommation

Les biens de consommation ne font pas exception. La résistance des pièces PA6-GF30, leur résistance aux chocs et leur tolérance à la chaleur sont des atouts majeurs pour ces produits.

  • Boîtiers d'aspirateur
  • Boîtiers pour outils électriques
  • Pièces de machine à laver

Equipement industriel

Dans les applications industrielles, le PA6-GF30 est devenu une excellente alternative aux pièces métalliques. Parmi les pièces courantes, on trouve :

  • Corps de pompe
  • Corps de soupape
  • Roues dentées
  • Coussinets de palier

Industrie aérospatiale

La nature légère, la durabilité et la résistance du matériau PA6 GF30 en font une option idéale dans l'industrie aérospatiale.

  • Panneaux intérieurs
  • Supports de support
  • Serre-câbles

Dispositifs médicaux

Vous pouvez également le trouver utilisé dans les appareils médicaux. Étant donné que le matériau PA6 GF30 ne rouille pas, ce matériau est idéal pour une utilisation dans les appareils médicaux. Certains composants courants incluent :

  • Manches pour instruments chirurgicaux
  • Boîtiers d'équipement de diagnostic
  • Boîtiers pour dispositifs médicaux

Atelier de moulage par injection PA6PA6 GF30 VS PA6.6-GF30 : quelle est la différence ?

 

Le PA6 GF30 et le PA6.6-GF30 sont des matériaux en nylon renforcés de fibre de verre 30%. Ce qui les différencie est l'utilisation de différents polymères de nylon. Le PA6 utilise du nylon 6, tandis que le PA6.6 utilise du nylon 6.6.

Le matériau PA6-GF30 est un type de matériau nylon-6 très répandu. Vous avez déjà entendu parler de ce matériau dans les sections précédentes. Il est solide, léger et très résistant à la température.

Le PA6.6-GF30, quant à lui, offre de meilleures propriétés que le matériau PA6 GF30. Son point de fusion est plus élevé, autour de 260 degrés Celsius. Par conséquent, il offre une meilleure résistance à la chaleur et une meilleure résistance mécanique à haute température.

Le matériau PA6.6-GF30 est également très répandu dans les secteurs de l'automobile ou de l'électricité. Il présente une meilleure résistance à l'usure et une plus faible absorption d'humidité, ce qui le rend largement utilisé dans des conditions climatiques extrêmes.

Ce qui rend le PA6 GF30 meilleur que le PA6.6-GF30, c'est le coût. Le coût de production du PA6.6-GF30 est souvent plus élevé. Le processus de fabrication complexe augmente généralement le prix. Par conséquent, les pièces en PA6-GF30 sont couramment utilisées dans diverses applications.

Questions fréquemment posées

À quel matériau le PA6 GF30 est-il similaire ?

En général, le PA6 GF30 offre des propriétés similaires à celles du PA6 ou du Nylon 6. Cependant, le matériau PA6-GF30 est une option supérieure au PA6. Cependant, vous pouvez également trouver certaines similitudes avec le polycarbonate et le plastique ABS. Ces matériaux présentent également des caractéristiques pratiquement similaires.

Le PA6 est-il plus résistant que le PA12 ?

En effet, le PA6 est plus résistant que le PA12. Plusieurs raisons existent, mais les plus cruciales sont la résistance à la traction et la rigidité élevées. Cependant, le PA12 est meilleur en termes de résistance aux chocs et de flexibilité. Ainsi, le choix entre ces deux nylons dépend de l'utilisation spécifique. Par exemple, si vous avez besoin d'un meilleur support structurel, optez pour le PA6.

Le PA6 absorbe-t-il l’eau ?

Oui, le PA6 absorbe l'eau. Bien que le taux d'absorption soit différent, le PA6 et le PA6.6 le font tous deux. Le taux d'absorption d'eau du PA6 est de 9%, tandis que celui du PA6.6 est de 7%.

Le PA6 est-il amorphe ou cristallin ?

Le PA6 est un polymère essentiellement semi-cristallin, qui possède à la fois des zones cristallines et amorphes. Cependant, c'est la structure cristalline qui domine le plus. De ce fait, ce matériau offre une excellente résistance et un point de fusion plus élevé.

Le PA6-GF30 peut-il être recyclé ?

Oui, le PA6-GF30 peut être recyclé, bien que le processus puisse être complexe. Le recyclage consiste généralement à broyer le matériau en granulés, qui peuvent ensuite être retraités. Notez que la présence de fibres de verre peut affecter la qualité du produit recyclé.

Résumé

PA6 GF30 est un matériau en nylon 6 renforcé de fibres de verre 30%. L'ajout de verre améliore généralement la résistance, la rigidité et les propriétés thermiques. Par rapport au PA6, ce nylon 6 chargé de verre est une meilleure option. De plus, la pièce PA6-GF30 offre des performances mécaniques supérieures, ce qui en fait un choix idéal pour de nombreuses applications.

Par rapport à PA6.6 GF30Le PA6-GF30 est plus rentable. Toutefois, si vous recherchez de meilleures performances, il est judicieux de choisir PA6.6-GF30 matériau. Notez que les deux absorbent l'humidité de 7% à 9%, bien que vous puissiez utiliser des revêtements pour éviter l'absorption.

Le matériau PA6-GF30 est largement utilisé dans les voitures, les équipements électriques et les biens de consommation. Les produits les plus populaires comprennent les capots de capot, les essuie-glaces de voiture, les roues motrices, les connecteurs, les prises et les fusibles.

Si vous avez besoin d'une solution de pièces en plastique sur mesure, n'hésitez pas à nous contacter. Notre équipe d'experts se fera un plaisir de vous aider.