El moldeo por inyección es una de las técnicas más comunes que se utilizan en la fabricación de plásticos, en la que las piezas se "inyectan" en moldes para formar piezas con dimensiones específicas. Este proceso depende de las consideraciones de diseño de la pieza de plástico para lograr la eficiencia en el cumplimiento de los objetivos de rendimiento y la estética y el costo de estas piezas. Este artículo analiza las características de diseño fundamentales de una pieza de plástico que se deben tener en cuenta durante el moldeo por inyección, como las nervaduras, los salientes, las compuertas, los rebordes, la tolerancia y sus efectos, la selección del material y las esquinas redondeadas.
¿Qué es el moldeo por inyección de plástico?
El diseño de las piezas de plástico implica el dibujo de las características de los subconjuntos y las piezas que se fabricarán mediante moldeo por inyección, un proceso de formación de piezas a partir del plástico fundido. Esto se caracteriza por llegar al mejor diseño que hará que las piezas sean resistentes, operativas y económicas de fabricar.
Fundamentos del proceso de moldeo por inyección
Antes de comprender el diseño de piezas de plástico, veamos una descripción general de los procesos importantes del moldeo por inyección de plástico. Estos pueden incluir:
1. Derretimiento
Los gránulos de plástico se introducen en la máquina de moldeo por inyección y se calientan hasta que alcanzan su temperatura máxima. Allí, los gránulos se transforman en plástico líquido, lo que hace que el plástico sea más flexible y se pueda moldear fácilmente en distintas formas.
2. Inyección
La inyección de plástico implica la inyección de plástico fundido en la cavidad del molde mediante alta presión. El molde se fabrica de manera que cree una determinada pieza. Además, la presión garantiza que el plástico adopte toda la forma del molde.
3. Enfriamiento
Una vez que el molde se ha llenado con el material plástico, hay que dejarlo enfriar para que se endurezca y luego dejarlo salir. El enfriamiento se puede realizar con la ayuda de aire o agua para enfriar el molde. Este proceso convierte el plástico en un material lo suficientemente duro y puede adoptar la forma del molde.
4. Expulsión
Existe una operación más, cuando el plástico endurecido se expulsa fuera del molde si el molde está abierto durante el enfriamiento. La pieza se retira sin destruirla mediante el uso de pasadores de expulsión u otros métodos. Luego, el molde se cierra para comenzar de nuevo con la siguiente pieza de plástico.
Llave Consideraciones sobre Diseño de piezas de plástico para moldeo por inyección
Cuando se trabaja con moldeo por inyección, el diseño optimizado de piezas de plástico es importante para lograr un moldeo por inyección de alta calidad y competitivo. costo del moldeo por inyecciónA continuación, analizaremos las consideraciones importantes del diseño de piezas de plástico para el proceso de moldeo por inyección;
1. Geometría de la pieza
La geometría de las piezas desempeña un papel importante en el manejo de las formas. Por lo tanto, analicemos las diferentes consideraciones que podemos tener en cuenta para aumentar la eficacia del proceso de moldeo por inyección.
I. Complejidad:
Los diseños son más bien simples o complejos, lo que implica que el costo de un molde dependerá de la complejidad de la pieza y del diseño del molde. Además, la complejidad del diseño da como resultado una gran cantidad de piezas. Las piezas planas, como un panel plano, son más económicas y fáciles de moldear en comparación con el diseño de una pieza con muchos socavados o características. Una de las realidades de la industria es que los diseños intrincados requieren el desarrollo de moldes intrincados, lo que a su vez significa un mayor costo.
II. Espesor uniforme de la pared:
En el trabajo de diseño, debe ser uniforme en todas las secciones, ya que la uniformidad genera menos problemas de fabricación. Cuando una pieza tiene paredes delgadas y paredes gruesas, la causa suele ser la diferente velocidad de enfriamiento que experimenta la pieza durante el proceso de moldeo. Este enfriamiento puede provocar deformaciones. En este caso, el material se dobla, se distorsiona o se forman marcas que son abolladuras en la superficie porque las secciones gruesas tardan más en enfriarse y solidificarse que las secciones delgadas.
2. Ángulos de inclinación
Los ángulos de desmoldeo son pequeñas elevaciones que se hacen a los lados de una pieza para permitir su fácil separación del molde. Sin ángulos de desmoldeo, la pieza de plástico podría quedar atrapada en el molde, lo que siempre será difícil de quitar sin comprometer la integridad estructural de la pieza y el material del molde. Es habitual configurar un ángulo de desmoldeo que esté en el rango de 1 a 3 grados para que la pieza pueda expulsarse fácilmente sin causar ciertos problemas.
3. Tolerancia y precisión dimensional
Por otra parte, las tolerancias son los límites aceptables de desviación en lo que respecta a las dimensiones de una pieza. Estas tolerancias deben ser precisas para que la pieza se ajuste adecuadamente y funcione de la manera correcta. Por supuesto, existen algunas limitaciones y requisitos asociados con esto, incluida la posibilidad de tolerancias más estrictas, como pequeñas variaciones. Sin embargo, serán costosas de lograr porque los moldes y el control de calidad tienen una tolerancia alta. En cambio, los niveles de tolerancia más bajos son mucho más fáciles de mantener, pero al mismo tiempo, probablemente influyan en el rendimiento de la pieza o interfieran.
4. Costillas y salientes
I. Costillas
Las costillas son elementos de refuerzo adicionales que se incorporan al interior de una pieza para aumentar su resistencia y rigidez, pero que aportan una ligera masa adicional a la pieza. Se utilizan de esta manera para ayudar a evitar la deformación de la pieza al brindar soporte adicional a la parte en particular. Las marcas de hundimiento (estas son abolladuras donde la costilla se encuentra con la pared principal) se deben evitar con costillas que deben tener la mitad del grosor de las paredes circundantes. Este equilibrio de grosor ayuda a la refrigeración y también reduce la tensión. Las costillas están hechas de material de grado SS 304 para minimizar la flacidez y corregir la tensión.
II. Jefes
Los salientes son piezas salientes características que sirven principalmente como puntos de anclaje para asegurar otras piezas. Deben reforzarse, generalmente con nervaduras, para soportar cargas mecánicas sin agrietarse ni transformar su forma. Los salientes también deben estirarse con el espesor adecuado para que sean lo suficientemente fuertes como para resistir el paso del tiempo.
5. Puertas y bebederos
I. Puertas
Son los puntos por donde el plástico fundido llega a fluir o entrar en el molde. La colocación y el diseño de las compuertas es otro aspecto importante que se debe tener en cuenta adecuadamente para garantizar que el molde se llene y, más aún, para reducir los defectos. Las compuertas que se utilizan habitualmente son las compuertas de borde, que se colocan en los bordes de la pieza, las compuertas de pasador, que son pequeñas compuertas colocadas en una ubicación específica y las compuertas submarinas, que se colocan dentro de la pieza. Por lo tanto, un diseño adecuado de la compuerta garantiza que los materiales se llenen de manera uniforme, lo que evita el desperdicio y el desarrollo de defectos.
II. Gradas
El bebedero es un sistema de canal a través del cual se dirige el plástico fundido hacia la cavidad del molde. El bebedero suele ser más grueso que otros canales y, a menudo, se moldea por separado para que se pueda separar fácilmente del resto del molde cuando se ensambla este. El diseño de un patrón de bebedero simple y eficiente permite reducir la cantidad de material de desecho utilizado, además de facilitar su extracción del molde. El bebedero debe estar bien diseñado de tal manera que favorezca el flujo de plástico y también minimice la cantidad de plástico que debe cortarse después del moldeo.
6. Sistemas de expulsión
Función: Cuando la pieza se solidifica después del enfriamiento, se utilizan los pasadores de expulsión para expulsarla del molde. Al diseñar el pasador de expulsión, es importante colocarlo alrededor de la pieza de tal manera que no la estropee ni le dé un mal aspecto. La buena colocación de los pasadores de expulsión desempeña un papel importante en la expulsión fácil y adecuada de las piezas del molde.
Consideraciones de diseño | Pautas/Valores importantes | Explicación |
Complejidad | Se prefieren geometrías más simples | Los diseños complejos aumentan el costo y la dificultad del molde. |
Espesor de pared uniforme | 1,5 mm - 4 mm | El espesor constante evita deformaciones y marcas de hundimiento. |
Ángulo de inclinación | 1° - 3° | Permite una fácil expulsión del molde. |
Precisión dimensional | ±0,1 mm - ±0,5 mm | Combine con las capacidades del proceso para un moldeo rentable. |
Grosor de la costilla | 50% de espesor de pared | Ayuda a prevenir marcas de hundimiento y mejora la resistencia estructural. |
Grosor del jefe | 60% - 80% de espesor de pared nominal | Garantiza la resistencia mecánica y el manejo de tensiones. |
Ubicación de la puerta | Cerca de secciones gruesas, lejos de superficies visuales | Asegura un llenado adecuado y reduce los defectos. |
Diámetro del bebedero | 1,5 mm - 6 mm | Asegura un flujo suave del plástico fundido. |
Ubicación del pasador eyector | Lejos de superficies cosméticas | Garantiza una expulsión suave de la pieza sin dañar la superficie. |
7. Ajustes por interferencia
Los ajustes por interferencia se utilizan cuando se requiere que los orificios y los ejes se conecten de tal manera que sean capaces de transmitir el par y otros tipos de fuerzas de manera eficiente. En los ajustes por interferencia, se deben tener en cuenta las tolerancias y la temperatura de funcionamiento para permitir una conexión confiable sin mucho esfuerzo en el montaje.
El nivel de interferencia puede determinarse mediante ecuaciones matemáticas precisas que tienen en cuenta la tensión de diseño, el coeficiente de Poisson, el módulo elástico y los coeficientes geométricos. La fuerza de montaje necesaria para los ajustes de interferencia también se calcula mediante estos cálculos.
8. Filetes y esquinas redondeadas en el diseño de piezas de plástico
Esto provoca la concentración de tensión y defectos en los componentes plásticos en caso de que se utilicen esquinas agudas. Los valores mayores del tamaño del filete, es decir, las esquinas redondeadas, reducen el nivel de concentración de tensión y, al mismo tiempo, permiten un flujo libre y más fácil del material plástico durante el proceso de moldeo. Es fundamental crear principios de diseño del radio de las esquinas para evitar los problemas de espesor de pared uniforme, así como la contracción.
9. Agujeros
I. Agujeros pasantes
Los agujeros que atraviesan el espesor de la pieza son más utilizados y más fáciles de crear que otros tipos de agujeros. Desde un punto de vista estructural, son más fáciles de controlar durante el diseño del molde. Se pueden producir empleando núcleos fijos tanto en la parte deslizante como en la estacionaria del molde o teniendo solo un núcleo en la parte deslizante y en la estacionaria del molde. El primero forma dos vigas en voladizo con brazos cortos bajo la influencia del plástico fundido, pero sufre un cambio insignificante.
Este último forma una viga simplemente apoyada con una deformación despreciable. Para evitar esta condición, el diámetro de uno de los núcleos debe ser ligeramente mayor y el del otro ligeramente menor que el del otro, de modo que todas las caras de contacto sean lo más lisas posible.
II. Agujeros ciegos
Los agujeros ciegos, es decir, agujeros que no se perforan a través de la pieza, son más difíciles de moldear. Generalmente se construyen utilizando un núcleo de viga en voladizo y el núcleo tiende a doblarse con el impacto del plástico fundido, lo que produce agujeros con forma irregular. Los agujeros ciegos son agujeros que terminan abruptamente y, por lo general, la profundidad del agujero ciego no debe ser más del doble del diámetro del agujero.
Para agujeros ciegos de diámetro igual a 1, su espesor debe ser de 5 mm o menos, mientras que su profundidad no debe exceder su diámetro. El espesor de la pared inferior del agujero ciego debe ser al menos un sexto del diámetro del agujero para evitar la contracción.
III. Orificios laterales
Los orificios laterales se realizan a través de los núcleos laterales y esto genera costos de molde y mantenimiento del molde, ya que la longitud de los núcleos laterales puede ser un problema, ya que pueden partirse. Para abordar estos desafíos, el diseño puede hacerse eficiente como una forma de corregir las ineficiencias actuales, de ahí los costos.
10. Conexiones a presión en el diseño de piezas de plástico
Los conjuntos de encaje a presión son cómodos para el bolsillo y respetuosos con el medio ambiente, ya que no se requieren otros elementos de fijación. Consisten en el enganche de una parte saliente más allá de una extensión exterior en otro elemento en el que la deformación elástica de las piezas permite la formación de una llave de enclavamiento. Existen principalmente tres tipos de encajes a presión, a saber, en voladizo, anulares y de bola.
En el diseño de un sistema de ajuste a presión intervienen dos ángulos críticos: el lado de retracción y el lado de entrada. El lado de retracción normalmente debe ser más largo que el lado de la junta para lograr un mejor rendimiento de bloqueo. La deflexión admisible de la estructura se puede determinar mediante ecuaciones específicas para un sistema de ajuste a presión determinado utilizando las constantes del material y los coeficientes geométricos.
11. Acabado superficial y texturas
Las siguientes formas pueden ayudarnos a lograr acabados superficiales y texturas eficientes para el producto final;
- Conseguir la estética deseada: El acabado de la superficie de una pieza no solo determina su apariencia, sino también su tacto. El diseñador establece la textura o el acabado en función de las necesidades estéticas, como mate o brillante.
- Impacto de la textura en el desmoldante: Se observa que la naturaleza de la textura de la superficie desempeña un papel importante a la hora de determinar la facilidad con la que se puede desmoldar la pieza. Las formas complejas pueden plantear ciertos desafíos adicionales que deberían ser ajenos al diseño para facilitar el desmoldeo.
- Técnicas de acabado de superficies: Se puede emplear un procesamiento adicional que incluya pulido, lijado o aplicación de una capa final para obtener el acabado óptimo.
12. Tolerancias y estabilidad dimensional
Por lo tanto, las siguientes consideraciones también ayudarán a aumentar la eficiencia de los diseños de piezas de plástico.
- Diseño para tolerancias estrictas: Los componentes con niveles de tolerancia más estrictos plantean un entorno complicado para el diseño de moldes y plantean mayores problemas de control del proceso de moldeo real. Se deben tener en cuenta algunos puntos importantes para tener en cuenta las diferencias en el flujo y el enfriamiento del material.
- Contabilización de la merma de material: Para controlar la contracción del material, los diseñadores deben establecer el tamaño de la cavidad del molde ligeramente más pequeño. El uso de este formato ayuda a garantizar que la pieza final cumpla con las dimensiones necesarias.
- Consideraciones sobre herramientas: Por lo tanto, la herramienta debe ser precisa en las dimensiones y estar bien mantenida para mejorar la estabilidad dimensional de las piezas moldeadas.
13. Selección de materiales
Por lo tanto, se recomienda a los usuarios que se aseguren de seleccionar el material adecuado que les permita lograr el rendimiento requerido de las piezas moldeadas. Todos los termoplásticos, incluidos los amorfos y los semicristalinos, tienen sus propias características. Entre los factores que influyen se encuentran la resistencia mecánica de los materiales que se van a incorporar y su cristalización, así como su higroscopicidad.
14. Análisis del flujo del molde
La parte de diseño también incluye el análisis del flujo del molde, por lo que podemos optimizarlo mediante el siguiente proceso:
- Importancia de simular el flujo de materiales: El análisis del flujo del molde tiene como objetivo determinar cómo se espera que fluya el plástico fundido dentro del molde. Por lo tanto, puede ayudar a identificar áreas con trampas de aire, líneas de soldadura y flujo irregular.
- Identificación de posibles problemas:Se puede evidenciar que la simulación puede identificar algunos problemas antes de la fabricación, que los diseñadores pueden corregir para la parte del diseño del molde.
- Optimización del diseño de piezas para el flujo del molde: Los cambios que se pueden realizar en función del flujo del molde ayudan a mejorar la calidad de la pieza y minimizar las tasas de defectos.
15. Prototipado y pruebas
Aquí hay algunas técnicas de creación de prototipos y pruebas que podemos usar para la efectividad de la parte de diseño.
- Utilizando técnicas de creación rápida de prototipos: Técnicas como la creación rápida de prototipos ayudan a los diseñadores a construir prototipos de la pieza de repuesto y a probar y evaluar la pieza física antes de adoptarla para la fabricación.
- Realización de pruebas físicas: Los prototipos sometidos a pruebas que incorporan esta pieza permiten evaluar el rendimiento, la durabilidad y la capacidad de la pieza para cumplir la función prevista. Aporta un valor añadido, ya que da una idea de las mejoras que se pueden realizar en su diseño.
- Iteración de diseños antes de la producción final: Con base en los resultados de las pruebas, podría ser posible ajustar el diseño de la pieza y trabajar en sus problemas, así como mejorar su rendimiento.
Errores de diseño comunes y cómo evitarlos durante el diseño
A continuación se muestran algunos errores importantes que debemos evitar al diseñar piezas de plástico.
- Mala selección de materiales: La selección de un material inadecuado perjudica el rendimiento de la pieza y su fabricación. Es necesario elegir los materiales adecuados que satisfagan las necesidades de la pieza.
- Ignorando los ángulos de inclinación: Por ejemplo, tener ángulos de inclinación pequeños puede generar problemas con la expulsión de piezas y el desgaste del molde. Asegúrese de que los ángulos de inclinación estén incluidos en el diseño.
- Complicación excesiva de la geometría de las piezas: Estas formas complican el molde y su fabricación y aumentan el coste del molde. Reduzca la complejidad de los diseños lo máximo posible para aumentar su capacidad de fabricación.
- Espesor de pared inadecuado: La porosidad, la falta de uniformidad en el espesor o las variaciones en el espesor de las paredes afectan negativamente al producto y provocan problemas como deformaciones y hundimientos. Es importante mantener constante el espesor de las paredes de la pieza para evitar variaciones en el espesor de las paredes.
Conclusión
En conclusión, se deben tener en cuenta varios factores al diseñar una pieza de plástico para moldeo por inyección, es decir, tipos de orificios, protuberancias, ajustes a presión o ajustes por interferencia y muchos otros, como tolerancias, materiales necesarios y radios de esquina. Con la apreciación de estos principios, los diseñadores pueden desarrollar piezas moldeadas que sean de buena calidad, duraderas y económicas de fabricar. El diseño de diseños de acuerdo con las características del proyecto y las condiciones ambientales garantiza los mejores resultados y estabilidad.
Preguntas frecuentes
P1. ¿Por qué es importante el diseño de piezas en el moldeo por inyección?
Nos ayudará a lograr una mayor efectividad en los procedimientos y las operaciones, ya que el diseño de fabricación incorpora estrategias que permiten producir la pieza de manera eficaz con alta precisión, menos defectos y menor uso de material.
Q2. ¿Qué son los agujeros pasantes?
Los agujeros pasantes son aquellos agujeros que atraviesan toda una pieza, son relativamente más fáciles de moldear y controlar.
Q3. ¿Qué son los agujeros ciegos?
Los agujeros ciegos no se extienden a través de una pieza y pueden ser más difíciles de moldear ya que el agujero puede doblarse y deformarse.
P4. ¿A qué se refieren los agujeros laterales en el moldeo por inyección?
Los orificios laterales se realizan con núcleos laterales que pueden aumentar la complejidad del molde y, por lo tanto, coste del molde de inyección.
P5. ¿Cómo deben diseñarse los jefes?
También debe haber filetes en las conexiones y un ajuste adecuado. Espesor de la pared del moldeo por inyección. Por lo tanto, pueden ayudar a soportar la tensión de la pieza. Además, los salientes también deben incluirse en la estructura de la pieza.
P6. ¿Qué significa una conexión a presión?
En la conexión a presión, una parte se desvía elásticamente para encajar en otra, de modo que no se utilizan fijaciones mecánicas directas.
P7. ¿Cómo calculamos la interferencia que se debe realizar?
La interferencia se obtiene mediante la tensión de diseño, el coeficiente de Poisson y los coeficientes geométricos.
P8. ¿Cuáles son los niveles de tolerancia en el moldeo por inyección de plásticos?
Los límites de tolerancia comprenden tolerancias de propósito general, medias y de alta precisión, que determinan la calidad y los precios de los productos. moldeo por inyección productos.