Schlagwortarchiv für: PPS-Spritzguss

TPE-Material

Was ist PPS-Kunststoff?

Polyphenylensulfid (PPS) ist ein Hochleistungsthermoplast mit hervorragender chemischer Beständigkeit, der bei allen Temperaturen bis 200 °C in nahezu keinem Lösungsmittel löslich ist. Es hat eine geringe Feuchtigkeitsaufnahme und bietet eine hohe mechanische Festigkeit und thermische Stabilität und ist daher für präzisionsgefertigte Teile geeignet. Gehe zu Hochtemperatur-Kunststoffmaterial Seite, um mehr über verwandte Materialien zu erfahren.

Dieses Material ist von Natur aus teilkristallin und hat einen Schmelzpunkt von bis zu 225 °F und einen thermischen Abbau von bis zu 425 °F. Es hat einen niedrigen Wärmeausdehnungskoeffizienten und wurde während der Herstellung spannungsfrei gemacht, was es ideal für Teile macht, die enge Toleranzen erfordern. Unter extremen Bedingungen zeigt PPS eine hervorragende Leistung und kann bei niedrigeren Temperaturen als billigerer Ersatz für PEEK verwendet werden. Aufgrund der sehr geringen ionischen Verunreinigungen eignet sich das Material für Anwendungen, die eine hohe Reinheit erfordern.

Sie können zu PEEK-Spritzguss Seite, um mehr über das PEEK-Material zu erfahren.

Es werden viele verschiedene PPS-Typen hergestellt und sie sind in glasfaserverstärkten, mineralischen und innengeschmierten Varianten erhältlich. Sie bieten Vorteile wie einen niedrigen Reibungskoeffizienten, erhöhte Verschleißfestigkeit und hohe Schlagfestigkeit.

Einführung in PPs-Kunststoff

Polyphenylensulfid (PPS) ist ein Hochleistungsthermoplast, der für seine ausgezeichnete chemische Beständigkeit bekannt ist. Dieses Material ist bei Temperaturen bis zu 200 °C (392 °F) beständig gegen alle Lösungsmittel. Die geringe Feuchtigkeitsaufnahme in Verbindung mit mechanischer Festigkeit und thermischer Stabilität macht es für Anwendungen geeignet, bei denen Präzisionsbauteile erforderlich sind.

Thermische Eigenschaften von Polyphenylensulfid (PPS)

PPS ist für seine hohe thermische Stabilität bekannt und kann bei hohen und niedrigen Temperaturen verwendet werden, ohne dass sich seine Eigenschaften ändern. Die folgenden Spezifikationen basieren auf den Tests, die mit Techtron® 1000 PPS, einer ungefüllten Sorte, durchgeführt wurden.

Wärmeformbeständigkeitstemperatur (HDT)

Die Wärmeformbeständigkeitstemperatur beschreibt die Wärmemenge, die ein bestimmter Kunststofftyp aushalten kann, bevor er unter einem bestimmten Gewicht nachgibt. Bei PPS liegt diese bei 115 °C (250 °F), wenn es mit 1,8 MPa (264 PSI) belastet wird und den Normen ISO 75-1/2 und ASTM D648 entspricht.

Maximale Gebrauchstemperatur

Die Dauergebrauchstemperatur von PPS kann bis zu 220 °C erreichen, das Material ist sehr lange einsetzbar, etwa 20.000 Stunden in Luft, und seine physikalischen Eigenschaften werden dadurch nicht beeinträchtigt.

Schmelzpunkt von PPS-Kunststoff

Die Glasübergangstemperatur von PPS beträgt gemäß I1357-1/-3 280 °C, während sie gemäß dem Prüfstandard ASTM D3418 540 °F beträgt.

Wärmeleitfähigkeit

Die Wärmeleitfähigkeit wird definiert als die Wärmeleitfähigkeit des betreffenden Materials. Wärmeleitfähigkeit: Wie Sie sehen, hat PPS eine bessere Wärmeleitfähigkeit als PEEK, aber eine geringere als PE und PTFE. Bei Raumtemperatur (23 °C oder 73 °F) betragen die Wärmeleitfähigkeitswerte für PPS:

ISO: 0,3 W/(Km)

ASTM: 2 BTU Zoll /(h·ft²·°F)

Entflammbarkeit und Feuerbeständigkeit

Die Flammbeständigkeit von PPS ist mit einer UL 94 V-0-Bewertung recht gut und es werden keine zusätzlichen Füllstoffe oder Zusatzstoffe benötigt. Es hat einen Sauerstoffindex von 44% gemäß den Ergebnissen der nach ISO 4589-1/2 durchgeführten Tests, was ebenfalls für die Feuerbeständigkeit des Materials spricht.

Linearer Wärmeausdehnungskoeffizient (CLTE)

Der lineare Wärmeausdehnungskoeffizient oder CLTE gibt an, wie stark sich ein Material bei steigenden Temperaturen ausdehnt. PPS hat im Vergleich zu den meisten anderen technischen Kunststoffen wie PET und POM einen CLTE von weniger als 40 und ist damit sogar kostengünstiger als PEEK und PAI. Diese geringe Ausdehnungsrate ist vorteilhaft für Anwendungen, bei denen in Umgebungen mit mittleren bis hohen Temperaturen enge Toleranzen erforderlich sind.

Was ist PPS-Kunststoff

Mechanische Eigenschaften von Polyphenylensulfid (PPS)

PPS ist bekannt für seine Kombination aus niedrigem Ausdehnungskoeffizienten und hoher mechanischer Festigkeit und eignet sich daher sowohl für tragende Anwendungen als auch für Komponenten, die eine komplexe Bearbeitung erfordern. Die folgenden Spezifikationen basieren auf den Tests, die mit Techtron® 1000 PPS, einer ungefüllten Sorte, durchgeführt wurden.

Wichtige mechanische Eigenschaften

Eigentum Wert (ISO) Wert (ASTM)
Dichte 1,35 g/cm³ (ungefüllt) 1,66 g/cm³ (40% glasfaserverstärkt)
Zugfestigkeit 102 MPa 13.500 PSI
Zugdehnung bei Streckgrenze 12% 3.6%
Bruchdehnung 12% 20%
Zug-E-Modul 4.000 MPa 500 KSI
Druckfestigkeit 21.500 PSI (ASTM D695)
Rockwell-Härte M 100 95
Rockwell R Härte 125
Charpy-Schlagzähigkeit (ungekerbt) Keine Pause
Charpy-Schlagzähigkeit (gekerbt) 2,0 kJ/m²
Izod-Schlagzäh (gekerbt) 0,60 Fuß-Pfund/Zoll
Biegefestigkeit 155 MPa 21.000 PSI
Biege-Elastizitätsmodul 575 KSI

Dichte

Ungefülltes PPS hat eine Dichte von ca. 1,35 g/cm³. Verstärkt man es beispielsweise mit Glasfasern 40%, steigt die Dichte auf ca. 1,66 g/cm³.

PPSU-Spritzgießen

PPSU-Spritzgießen

Zugfestigkeit

Diese Zugfestigkeit ist viel höher als bei anderen technischen Kunststoffen, die in der gleichen Preisklasse wie PPS erhältlich sind. Die Zugfestigkeitseigenschaften von Techtron® 1000 PPS bestehen aus einer Zugfestigkeit von 102 MPa (13.500 PSI), einer Streckgrenze von 12% und einer Bruchdehnung von 12%.

Druckfestigkeit

Eine weitere erwähnenswerte mechanische Eigenschaft ist die Druckfestigkeit von PPS, die gemäß ASTM D695-Test auf etwa 21.500 PSI geschätzt wird.

Härte und Schlagfestigkeit

PPS weist eine hervorragende Härte und Schlagfestigkeit auf: PPS weist eine hervorragende Härte und Schlagfestigkeit auf:

 

Rockwell-Härte M: 100 (ISO), 95 (ASTM).

Rockwell-Härte R: 125, (ASTM)

Charpy-Schlagzähigkeit: Ungekerbte Proben weisen keine Risse auf, während gekerbte Proben eine Festigkeit von ca. 2,0 kJ/m² aufweisen.

Izod-Schlagzäh (gekerbt): 0,60 ft·lb/Zoll.

Biegeeigenschaften

PPS-Polymere haben eine hohe Festigkeit und einen hohen Biegemodul, wodurch sie für strukturelle Anwendungen geeignet sind. Die Biegefestigkeit beträgt 155 MPa (21.000 PSI) und der Biegemodul 575 KSI, was auf die Steifigkeit und Tragfähigkeit hinweist.

Man kann feststellen, dass PPS über ziemlich hohe mechanische Eigenschaften verfügt, was seinen Einsatz in den Branchen ermöglicht, in denen hochfeste und präzise Teile erforderlich sind.

Elektrische Eigenschaften von Polyphenylensulfid (PPS)

Unter allen Polymermaterialien eignet sich Polyphenylensulfid (PPS) besonders gut für die elektrische Hochspannungsisolierung. Aufgrund seiner teilkristallinen und unpolaren Molekularstruktur weist es eine sehr geringe Elektronenbeweglichkeit und damit einen hohen elektrischen Widerstand auf, was es zu einem schlechten Stromleiter macht.

 

Die folgenden elektrischen Spezifikationen basieren auf Tests, die mit Techtron® 1000 PPS, einer ungefüllten Sorte, durchgeführt wurden.

Tabelle: Wichtige elektrische Eigenschaften

Eigentum Wert
Durchschlagsfestigkeit 18 kV/mm (IEC 60243-1)
540 V/mil (ASTM D149)
Oberflächenwiderstand 10^12 Ohm/Quadrat (ANSI/ESD STM 11.11)
Volumenwiderstand 10^13 Ohm/cm (IEC 62631-2-1)

Durchschlagsfestigkeit

Die dielektrische Festigkeit bezeichnet die elektrische Festigkeit eines Materials unter Spannung. Für ungefülltes PPS beträgt dieser Wert gemäß IEC 60243-1 etwa 18 kV/mm oder gemäß ASTM D149-Standard 540 V pro mil. Diese Eigenschaft ist von Bedeutung bei der Beurteilung der Eignung von PPS als elektrischer Isolator.

Elektrischer Widerstand

Der elektrische Widerstand hingegen ist das Maß für die Fähigkeit eines Materials, dem Fluss von elektrischem Strom Widerstand zu bieten. PPS hat eine sehr geringe elektrische Leitfähigkeit, daher ist sein elektrischer Widerstand im Vergleich zu vielen anderen üblichen technischen Kunststoffen gering, was es ideal für den Einsatz in Isolierdiensten macht. Ungefülltes PPS hat einen Oberflächenwiderstand von 10^12 Ohm/sq (ANSI/ESD STM 11. 11) und einen Volumenwiderstand von 10^13 Ohm/cm (IEC 62631-2-1).

Chemische Verträglichkeit von Polyphenylensulfid (PPS)

Eine der wichtigsten Eigenschaften von PPS ist seine sehr gute chemische Beständigkeit, die es zu einem der chemisch beständigsten technischen Thermoplaste auf dem heutigen Markt macht, insbesondere wenn man seinen Preis berücksichtigt. Es nimmt sogar noch weniger Feuchtigkeit auf, was es bei verschiedenen schwierigen Anwendungen noch widerstandsfähiger macht. PPS ist eine ausgezeichnete Wahl für Umgebungen mit:

  • Starke Säuren und Basen: Es kann auch einigen Substanzen wie Schwefelsäure, Salzsäure, Natriumhydroxid und Kaliumhydroxid ausgesetzt werden.
  • Organische Lösungsmittel: PPS weist eine akzeptable Lösungsmittelbeständigkeit gegenüber mehreren organischen Lösungsmitteln auf, darunter Alkohole, Ketone, Ester und aromatische Kohlenwasserstoffe.
  • Oxidationsmittel: Es ist möglich, dieses Material mit Oxidationsmitteln wie beispielsweise Wasserstoffperoxid und Chlor zu verwenden.
  • Kohlenwasserstoffe: Sie können auch mit Kraftstoffen, Ölen und allen Arten von Schmiermitteln verwendet werden, die im Auto eingesetzt werden können.

 

  • Halogene: Es eignet sich für Anwendungen, die Sterilisation und Desinfektion beinhalten, wie etwa die Verwendung von Bleichmittel und die Reinigung vor Ort/Sterilisation vor Ort.
  • Feuchtigkeit und Luftfeuchtigkeit: Aufgrund der geringen Feuchtigkeitsaufnahme ist es ideal für Orte mit hoher Luftfeuchtigkeit.

Alles in allem eignet sich PPS ideal für den Einsatz in Anwendungen, die mit einem breiten Spektrum an Chemikalien in Kontakt kommen, und bietet dauerhaften Einsatz in rauen Umgebungen.

Anwendungen von Polyphenylensulfid (PPS)

Polyphenylensulfid (PPS) ist ein thermoplastischer Hochleistungswerkstoff mit vielen besonderen Eigenschaften. Aufgrund seiner relativ geringen Kosten und der Möglichkeit, daraus Gegenstände herzustellen, eignet es sich gut für mehrere Branchen, insbesondere für solche mit hohen Temperaturen.

Hier ist eine Aufschlüsselung der Hauptanwendungen:

Automobilindustrie

PPS wird auch in der Automobilindustrie eingesetzt, da es in der Lage ist, Metalle und andere Materialien in rauen Anwendungsbereichen zu ersetzen. Es ist besonders wirksam für Komponenten, die Folgendem ausgesetzt sind: Es ist besonders wirksam für Komponenten, die Folgendem ausgesetzt sind:

  • Hohe Temperaturen: Am besten geeignet für den Einsatz in Bereichen, in denen die Installation fester Geräte schwierig ist, wie beispielsweise unter der Motorhaube eines Autos.
  • Kfz-Flüssigkeiten: Wird durch verschiedene Flüssigkeiten nicht so leicht korrodiert.
  • Mechanische Beanspruchung: Es bietet die dringend benötigte Ausdauer in stressigen Momenten.

Zu den wichtigsten Automobilanwendungen gehören:

  • Kraftstoffeinspritzsysteme
  • Kühlmittelsysteme
  • Wasserpumpen-Laufräder
  • Thermostatgehäuse
  • Elektrische Bremskomponenten
  • Schalter und Lampengehäuse

In manchen Fällen wird PPS, wenn es um Innen- oder Außenverkleidungsteile geht, nicht so häufig verwendet, für funktionale Automobilanwendungen eignet es sich jedoch sehr gut.

Elektrik und Elektronik

PPS ist aufgrund seiner Eigenschaften ein bevorzugtes Material im Elektro- und Elektroniksektor (E&E):

  • Hoher Wärmewiderstand: Am besten für Teile verwenden, die Hitze ausgesetzt sind.
  • Hervorragende Zähigkeit und Dimensionsstabilität: Garantiert Zuverlässigkeit bei Anwendungen, bei denen es auf Genauigkeit ankommt.
  • Geringe Schrumpfung: Ermöglicht eine bessere und richtige Formgebung komplexer Stecker und Buchsen.

PPS ist auch für die Entflammbarkeitsklasse UL94 V-0 ohne Verwendung weiterer Flammschutzmittel bekannt. Es wird häufig verwendet in:

  • Stecker und Buchsen
  • Spulenkörper für elektrische Spulen
  • Elektronikgehäuse
  • Festplattenlaufwerkkomponenten
  • Schalter und Relais

Der Übergang zu PPS in E&E-Anwendungen wird daher durch die Tatsache notwendig, dass Polymere ersetzt werden müssen, die gegenüber niedrigen Temperaturen weniger beständig sind.

Haushaltsgeräte

Aufgrund seiner minimalen Schrumpfung und Quellung sowie seiner nicht korrosiven und nicht hydrolysierenden Eigenschaften bei Hitzeeinwirkung wird PPS in verschiedenen Haushaltsgeräten eingesetzt. Zu den üblichen Anwendungen gehören:

  • Heizungs- und Klimaanlagenkomponenten
  • Bratpfannenstiele
  • Haartrocknergitter
  • Dampfbügeleisenventile
  • Toasterschalter
  • Drehteller für Mikrowellenherde

Industrielle Anwendungen

Es ist zu beobachten, dass PPS in den Bereichen des Maschinenbaus, in denen chemisch aggressive Umgebungen herrschen, Metalle und Duroplaste ersetzt. Aufgrund seiner Eigenschaften ist es ideal für:

Bei den Anwendungen handelt es sich normalerweise nicht um standardmäßiges verstärktes Spritzgießen, sondern eher um stärker industrialisierte Verfahren.

Faserextrusionsverfahren und Antihaftbeschichtungen.

  • Druckgeformte Komponenten für Geräte und Feinmechanik, einschließlich Pumpen, Ventile und Rohre.
  • Auf Ölfeldern verwendete Kreiselpumpenkomponenten sowie deren Stangenführungen.
  • Geräteelemente wie HVAC-Systeme (Heizungs-, Lüftungs- und Klimasysteme), Kompressorkomponenten, Gebläsegehäuse und Thermostatteile.

Medizin und Gesundheitswesen

In der Medizinbranche wird glasfaserverstärktes PPS für die Herstellung von chirurgischen Instrumenten und anderen Ausrüstungselementen verwendet, die sowohl robust als auch hitzebeständig sein müssen. Darüber hinaus werden PPS-Fasern auch für medizinische Membranen und andere Anwendungen verwendet.

Vielfältige Materialoptionen

PPS ist in verschiedenen Formen erhältlich, darunter mit Glasfüllung, mit Mineralienfüllung und mit Innenschmierung. Diese Optionen können Vorteile wie geringere Reibung, verbesserte Verschleißfestigkeit und erhöhte Schlagfestigkeit mit sich bringen.

PPS-Typen basierend auf Synthesemethoden

Polyphenylensulfid (PPS) kann je nach Syntheseverfahren in drei Haupttypen eingeteilt werden. Jeder Typ bietet unterschiedliche Eigenschaften und Vorteile und eignet sich daher für verschiedene Anwendungen.

Übersicht der PPS-Typen

PPS-Typ Beschreibung
Lineares PPS Diese Version weist ein Molekulargewicht auf, das fast doppelt so hoch ist wie das von Standard-PPS. Aufgrund seiner längeren Molekülketten bietet es eine verbesserte Zähigkeit, Dehnung und Schlagfestigkeit.
Ausgehärtetes PPS Hergestellt durch Erhitzen von normalem PPS in Gegenwart von Sauerstoff (O2). Dieser Aushärtungsprozess dehnt die Molekülketten aus und erzeugt einige Verzweigungen, was zu einem höheren Molekulargewicht und duroplastähnlichen Eigenschaften führt.
Verzweigtes PPS Dieser Typ hat im Vergleich zu normalem PPS ein höheres Molekulargewicht. Seine Molekularstruktur umfasst verzweigte Ketten, die die mechanischen Eigenschaften, Zähigkeit und Duktilität verbessern.

Detaillierte Eigenschaften

  • Lineares PPS: Lineares PPS hat eine hohe mechanische Festigkeit und wird daher dort eingesetzt, wo Zugfestigkeit und Flexibilität des Produkts erwünscht sind. Es verfestigt sich außerdem schnell, wenn es Hitze über der Glasübergangstemperatur von etwa 85 °C ausgesetzt wird, und ist daher in verschiedenen Produktionsprozessen nützlich.
  • Ausgehärtetes PPS: Der Aushärtungsprozess führt auch zu einer Erhöhung des Molekulargewichts des Duroplasts und seiner Eigenschaften, wodurch es ideal für den Einsatz bei hohen Temperaturen wird. Diese Veränderungen sind vorteilhaft, da sie für eine erhöhte Festigkeit und Stabilität der Strukturen sorgen, was insbesondere unter Bedingungen hoher Belastung wichtig ist.
  • Verzweigtes PPS: Das verzweigte PPS hat eine verzweigte Struktur, die für die Anwendung eine hohe Zähigkeit und Schlagfestigkeit bietet. Aufgrund seiner höheren Duktilität eignet es sich für Teile, die dynamischen Belastungen oder Stößen ausgesetzt sein können.

Durch das Verständnis dieser PPS-Typen ist ein Hersteller in der Lage, den geeigneten Materialtyp für seine Anwendung auszuwählen, um Leistung und Lebensdauer zu verbessern.

Verbesserung der Materialeigenschaften von PPS-Kunststoff durch Additive

PPS ist in verschiedenen Typen erhältlich und aufgrund seiner inhärenten chemischen Beständigkeit ist es möglich, verschiedene Additive hinzuzufügen, um seine Eigenschaften zu verbessern. Diese verbessern die mechanischen Eigenschaften, thermischen Merkmale und andere relevante Eigenschaften.

PPS wird üblicherweise mit Füllstoffen und Fasern modifiziert oder mit anderen Thermoplasten copolymerisiert, um seine Eigenschaften zu verbessern. Beliebte Verstärkungen sind:

  • Glasfaser
  • Kohlefaser
  • PTFE (Polytetrafluorethylen)

Es werden verschiedene PPS-Qualitäten angeboten, darunter:

  • Ungefüllt Natur
  • 30% Glasgefüllt
  • 40% Glasgefüllt
  • Mit Mineralien gefüllt
  • Glas-Mineral-gefüllt
  • Leitfähige und antistatische Varianten
  • Lagerklassen mit Innenschmierung

Darunter haben sich PPS-GF40 und PPS-GF MD 65 aufgrund ihrer Leistung als Marktstandard herauskristallisiert und nehmen daher einen beträchtlichen Marktanteil ein.

Vergleich der Eigenschaften verschiedener PPS-Qualitäten

In der folgenden Tabelle sind die typischen Eigenschaften ungefüllter und gefüllter PPS-Typen zusammengefasst:

Eigenschaftsvergleich der PPS-Typen

In der folgenden Tabelle sind die typischen Eigenschaften ungefüllter und gefüllter PPS-Typen zusammengefasst:

Eigentum (Einheit) Testmethode Ungefüllt Glasfaserverstärkt Glas-Mineral gefüllt
Füllinhalt (%) 40 65
Dichte (kg/l) ISO 1183 1.35 1.66 1.90 – 2.05
Zugfestigkeit (MPa) ISO 527 65 – 85 190 110 – 130
Bruchdehnung (%) ISO 527 6 – 8 1.9 1.0 – 1.3
Biegemodul (MPa) ISO 178 3800 14000 16000 – 19000
Biegefestigkeit (MPa) ISO 178 100 – 130 290 180 – 220
Izod-Kerbschlagzähigkeit (kJ/m²) ISO 180/1A 11 5 – 6
HDT/A bei 1,8 MPa (°C) ISO 75 110 270 270

Verarbeitungstechniken für Polyphenylensulfid (PPS)

PPS-Harze werden in verschiedenen Verfahren wie Blasformen, Spritzgießen und Extrusion eingesetzt und normalerweise bei einer Temperatur von 300–350 °C verarbeitet. Aufgrund des hohen Schmelzpunkts ist es jedoch nicht sehr einfach, insbesondere gefüllte Sorten zu verarbeiten, bei denen die Gefahr einer Überhitzung der Geräte besteht.

Anforderungen an die Vortrocknung

Der Formprozess ist entscheidend, um die Form der geformten Produkte zu verändern und ein Auslaufen zu verhindern. Es wird empfohlen, PPS bei folgenden Temperaturen zu trocknen: Es wird empfohlen, PPS bei folgenden Temperaturen zu trocknen:

  • Bei 150–160 °C für 2–3 Stunden oder bei 170–180 °C für 1–2 Stunden oder bei 200–220 °C für 30 Min.–1 Std.
  • 120°C für 5 Stunden

Dieser Schritt ist insbesondere bei mit Kohlenstofffasern gefüllten Typen von entscheidender Bedeutung, da diese bekanntermaßen aufquellen und Feuchtigkeit aufnehmen, die sich nachteilig auf das Endprodukt auswirkt.

Spritzgussparameter

Es ist wichtig zu betonen, dass PPS im Spritzgussverfahren verarbeitet werden kann. Um die Produktivität des Formprozesses zu verbessern, sollte die Formtemperatur 50 Grad Celsius und die Nachkristallisationstemperatur 200 Grad Celsius betragen. Dieses Verfahren kann jedoch nicht bei Anwendungen angewendet werden, bei denen ein hoher Wert an Dimensionsstabilität erforderlich ist. Da PPS eine niedrige Viskosität zum Füllen aufweist, muss man sich auf den Formschluss konzentrieren.

Typische Parameter sind:

  • Zylindertemperatur: 300-320°C
  • Formtemperatur: 120–160 °C, damit das Gewebe richtig kristallisieren kann und sich nicht verzieht.
  • Einspritzdruck: 40-70 MPa
  • Schneckendrehzahl: 40-100 U/min

Extrusionsprozess

PPS kann auch extrudiert werden. Dieses Verfahren wird bei der Herstellung von Fasern, Monofilamenten, Rohren, Stäben und Platten angewendet. Zu den empfohlenen Verarbeitungsbedingungen gehören:

  • Trocknungstemperatur: 121 °C für 3 h
  • Formtemperatur: 300-310°C
  • Schmelztemperatur: 290-325°C

Nachhaltigkeit von PPS

Wenn PPS jedoch verantwortungsbewusst beschafft und hergestellt wird, gilt es als eines der nachhaltigen Polymere. Seine Nachhaltigkeit hängt von den folgenden Faktoren ab:

Beschaffung der Rohstoffe:

Die Auswahl erneuerbarer Materialien bei der Herstellung von PPS kann ebenfalls zur Verringerung der Treibhausgasemissionen und zur Verbesserung der Effizienz beitragen.

Haltbarkeit:

PPS nutzt sich durch Hitze und Chemikalien nicht ab und hält daher länger, da es sich die meiste Zeit nicht abnutzt und nur selten ausgetauscht werden muss.

Ist ABS-Kunststoff sicher?

 

Recyclingoptionen: Polyphenylensulfid kann auf folgende Arten recycelt werden:

  • Mechanisches Recycling: Verfahren wie Mahlen oder Zerkleinern.
  • Chemisches Recycling: Es werden Schritte wie Depolymerisation oder ähnliche Schritte durchgeführt.

Obwohl der Schmelzpunkt von PPS hoch ist und es chemisch inert ist, was das Recycling erschwert, gibt es in der Recyclingbranche für Post-Consumer-Kunststoffe eine kontinuierliche Entwicklung. In Anlagen zum Recycling von PPS und anderen ähnlichen duroplastischen Polymeren wurde investiert, was eine Kreislaufwirtschaft unterstützt.

Leichtgewichtige Funktionen

Die typischste oder beliebteste Verwendung von PPS ist der Ersatz von Metallen, da es leicht ist und nicht korrodierend gegenüber Salzen und Autoflüssigkeiten wirkt. Es kann mehrere hochkomplexe Segmente korrekt zusammensetzen, um mehrere Funktionen zu erfüllen.

Zertifizierungen und Sicherheitsaspekte

PPS-Produkte, die aus recycelten und/oder aus Biomasse hergestellten Materialien hergestellt und ISCC+-zertifiziert sind, gelten als nachhaltig. Sie stellen keine große Gefahr für Mensch und Umwelt dar, aber es sollten Vorsichtsmaßnahmen ergriffen werden, um die damit verbundenen Risiken zu minimieren.

Vorteile des Spritzgusses mit PPS

Das Spritzgussverfahren mit Polyphenylensulfid (PPS) bietet zahlreiche Vorteile und wird deshalb bevorzugt für die Herstellung von Hochleistungsteilen eingesetzt.

Überlegene mechanische Festigkeit

PPS weist als Material mehrere hervorragende mechanische Eigenschaften auf, darunter Zugfestigkeit, Biegefestigkeit und Schlagfestigkeit. Dank dieser Eigenschaften können PPS-Komponenten auch unter schwierigen Bedingungen eingesetzt werden, bei denen die Materialfestigkeit von größter Bedeutung ist.

Hervorragende thermische Stabilität

Eine der wichtigsten Eigenschaften von PPS ist seine Hitzebeständigkeit: Dieser Kunststoff zerfällt nicht, verliert seine Festigkeit und Elastizität und verzieht sich auch nicht, wenn er über längere Zeit hohen Temperaturen ausgesetzt ist. Aufgrund seiner thermischen Stabilität eignet er sich gut für den Einsatz in Bereichen, in denen Hitze entsteht.

Ausgezeichnete chemische Beständigkeit

PPS scheint gegenüber vielen Chemikalien, darunter Säuren, Basen, Lösungsmittel und Kohlenwasserstoffe, äußerst resistent zu sein. Diese Eigenschaft macht es für den Einsatz in schwierigen chemischen Anwendungen geeignet.

Konstante Dimensionsstabilität

Darüber hinaus können PPS-Teile bei Temperaturschwankungen nicht durch Form- und Größenänderungen beeinträchtigt werden und eignen sich daher für den Einsatz in Anwendungen, die enge Toleranzen erfordern.

Leichte Zusammensetzung

PPS weist eine relativ geringere Dichte als Metalle auf, verfügt gleichzeitig aber über eine gute mechanische Festigkeit und ist daher besser für Anwendungen geeignet, bei denen das Gewicht ein entscheidender Faktor ist.

Nachteile des PPS-Kunststoffspritzgusses

Es ist jedoch wichtig, die folgenden Einschränkungen von PPS im Spritzgussverfahren zu berücksichtigen. Diese Faktoren müssen bewertet werden, um besser zu verstehen, ob sie für Ihren speziellen Einsatz geeignet sind.

Höhere Kosten

PPS-Harze sind im Vergleich zu vielen anderen Thermoplasten verhältnismäßig teuer, und dieser Faktor kann bei der Verwendung von PPS in der Großserienproduktion oder bei kostensensiblen Projekten zu hohen Gesamtkosten führen.

Schleifeigenschaften

Der hohe Füllstoffanteil, der zur Verbesserung der mechanischen Eigenschaften von PPS verwendet wird, wirkt sich auf den Verschleiß der Spritzgussgeräte aus. Dies kann wiederum zu vorzeitigem Verschleiß von Schnecken, Zylindern und Formen führen.

Begrenzte Farbauswahl

Richtig hergestelltes PPS ist im Allgemeinen schwarz oder dunkelbraun, was die Möglichkeiten heller oder heller Farbtöne im fertigen Produkt einschränkt.

Inhärente Sprödigkeit

Obwohl PPS etwas spröde sein kann, ist dies kein allzu großes Problem und kann mithilfe von Fasern und Verstärkungen ausgeglichen werden. Diese Zusätze können jedoch auch die Eigenschaften des Materials verändern, was sich auf die Festigkeit, die Oberflächenbeschaffenheit, die Dimensionsstabilität und die Kosten des Produkts auswirkt.

Schlussfolgerung

Zusammenfassend kann festgehalten werden, dass Spritzgießen mit PPS bietet mehrere Vorteile, insbesondere bei Hochleistungsteilen mit hoher mechanischer Belastung, Hitze- und Chemikalienbeständigkeit. Allerdings muss man die höheren Kosten und einige der inhärenten Einschränkungen des Ansatzes berücksichtigen, die von den Besonderheiten der Projekte abhängen. Durch den Vergleich dieser Faktoren können Hersteller also die richtigen Entscheidungen über die Verwendung von inS in ihren Anwendungen treffen, um maximale Leistung und Kosten zu erzielen.

PPS-Formteil

PPS, auch bekannt als Polyphenylensulfid, ist ein Hochtemperatur-Kunststoff, der in vielen Industriezweigen verwendet wird. Aufgrund seiner Proteien wird PPS speziell zum Formen von Komponenten verwendet, die in Umgebungen mit hohen Temperaturen eingesetzt werden. Es gibt viele andere ähnliche Kunststoffmaterialien wie PPS, die Hochtemperaturmaterialien sind. Gehen Sie zu Kunststoffmaterial mit hoher Temperatur Seite, um mehr über ähnliche Kunststoffmaterialien zu erfahren.

In diesem Blogbeitrag untersuchen wir, was PPS-Spritzguss ist, welche Vor- und Nachteile PPS-Kunststoff-Spritzgussteile haben, wie der Prozess selbst funktioniert, welche Materialien mit PPS-Spritzguss kompatibel sind, geben Tipps für erfolgreichen PPS-Spritzguss und stehen vor den Herausforderungen und potenziellen Problemen, die während des Prozesses auftreten können.

Was ist PPS-Material

Was ist PPS-Spritzguss

PPS (Polyphenylensulfid) ist ein thermoplastischer Kunststoff, der für seine hohe Hitzebeständigkeit, chemische Beständigkeit und Dimensionsstabilität bekannt ist. Es ist ein teilkristallines Material mit hervorragenden mechanischen Eigenschaften und wird oft mit Glasfaser verstärkt, um seine Festigkeit und Steifigkeit zu erhöhen.

Aufgrund seiner hohen Leistungsmerkmale wird PPS-Material häufig in Anwendungen wie Automobilteilen, elektrischen Komponenten und Industrieprodukten verwendet. Es hält hohen Temperaturen und aggressiven Chemikalien wie Säuren, Basen und organischen Lösungsmitteln stand. Es verfügt außerdem über gute elektrische Isoliereigenschaften und ist UV-beständig.

PPS ist ein teureres Kunststoffmaterial im Vergleich zu anderen Kunststoffen, was den Prozess kostspieliger machen kann. Außerdem. Sie können gehen zu Was ist PPS-Kunststoff? Materialseite, um mehr über PPS zu erfahren.

Eine kurze Geschichte des PPS-Kunststoffmaterials:

PPS (Polyphenylensulfid) hat eine faszinierende Geschichte. Seine Existenz wurde erstmals 1888 von Friedel und Crafts ans Licht gebracht. Ende der 1940er Jahre wurde entschieden, dass PPS ein technischer Kunststoff mit marktfähiger Bedeutung werden könnte. Später entwickelte Phillips Petroleum (USA) ein marktfähiges Verfahren zur Polymerisation von PPS und war 1973 das erste Unternehmen, dem es gelang, einen Produktionsbetrieb aufzubauen. Diese frühe Interpretation von PPS hatte ein ziemlich niedriges Molekulargewicht und es wurden Verfahren für seine Verwendung in Spezialbeschichtungen entwickelt. In der Zwischenzeit wurden durch Erhöhung des Molekulargewichts durch eine thermische Vernetzungsreaktion in Gegenwart von Sauerstoff sowohl die Verarbeitung als auch die mechanischen Eigenschaften verbessert. Es wurde auch entdeckt, dass PPS für Spritzguss geeignet ist und eine ausgezeichnete Hitze- und Chemikalienbeständigkeit aufweist.

Bei der Herstellung ist die Wahl der richtigen Materialien äußerst wichtig. Sie kann die Leistung und Lebensdauer von Produkten erheblich beeinflussen. Polyphenylensulfid (PPS) ist ein robuster thermoplastischer Kunststoff, der aufgrund seiner erstaunlichen Eigenschaften für anspruchsvolle Anwendungen beliebt ist. Wir werden sehen, wie mit dieser Technik erstklassige PPS-Kunststoffteile entstehen, die den strengen Anforderungen verschiedener Branchen gerecht werden.

Arten von PPS-Kunststoff: PPS-Harz gibt es in verschiedenen Formen, die jeweils für bestimmte Anwendungen bestimmt sind:

  • Lineares PPS: Es verfügt über etwa das doppelte Molekulargewicht von normalem PPS, was seine Zähigkeit und Schlagfestigkeit erhöht.
  • Ausgehärtetes PPS: Normales PPS wird mit Luft erhitzt. Dieser Aushärtungsprozess streckt die Molekülketten und fügt einige Verzweigungen hinzu, wodurch es stärker und duroplastischer wird.
  • Polysulfon, Polyphenylensulfid (PSE): Dieser Typ hat ein höheres Molekulargewicht als normales PPS, wodurch sich mehr Polymerketten verzweigen können. Dies verbessert Eigenschaften wie Zähigkeit und Duktilität.

PPS-Formteile verstehen: Ein Materialüberblick:

PPS-Spritzgussteile sind ein starkes Polymer, das für seine fantastische thermische Stabilität und chemische Beständigkeit bekannt ist. Es nutzt sich unter rauen Bedingungen wie hoher Hitze und aggressiven Chemikalien nicht so leicht ab. Hier sind einige wichtige Merkmale des PPS-Kunststoffmaterials:

  • Hohe thermische Verformungstemperatur: Es hält hohen Temperaturen lange stand, ohne seine Form oder Funktion zu verlieren.
  • Hervorragende chemische Beständigkeit: Unsere Rohre sind beständig gegen die meisten Säuren, Basen und Lösungsmittel, die in rauen Umgebungen verwendet werden (wie beispielsweise Locale-Rohre).
  • Mechanische Festigkeit: Es verfügt über eine hohe Zugfestigkeit, Biegemodul und Schlagfestigkeit – und sorgt so dafür, dass die Teile während des Gebrauchs intakt bleiben!
  • Dimensionsstabilität: PPS behält seine Form unter verschiedenen Bedingungen gut – perfekt für Aufgaben, die enge Toleranzen erfordern.
  • Elektrische Eigenschaften: Aufgrund seiner hohen elektrischen Isolierung eignet es sich für motorbetriebene und elektrische Teile.
  • Flammhemmung: Es ist von Natur aus flammhemmend und erfüllt die strengen Sicherheitsnormen für Branchen wie die Luft- und Raumfahrt sowie die Automobilindustrie.
  • Geringe Wasseraufnahme: Mit einer Absorption von nur 0,021 TP5T eignet es sich hervorragend für Bereiche, die nur eine minimale Feuchtigkeitsaufnahme benötigen.

Die Kunst des PPS-Spritzgusses:

Spritzguss ist eine flexible Methode zur Herstellung von Teilen, indem geschmolzener Kunststoff in eine Form gespritzt wird, um komplexe Formen zu erzeugen. In Kombination mit den erstaunlichen Eigenschaften des PPS-Materials erhalten Sie leistungsstarke und langlebige PPS-Spritzgusskomponenten.

Wichtige Überlegungen zum PPS-Spritzguss:

Beim Formen mit PPS-Kunststoffen müssen wir Folgendes beachten:

  • Formdesign: Ein gutes Formendesign trägt zur Fließdynamik und Teilequalität bei. Dinge wie die Kanalposition und Kühlkanäle sind sehr wichtig. PPS ist ein hitzebeständiger und sehr reißfester Kunststoff. Formendesign und Auswahl des Hohlraumstahls sind für die lange Lebensdauer der Form von großer Bedeutung.
  • Materialauswahl: Die richtige PPS-Qualität wird je nach Bedarf ausgewählt – achten Sie auf Hitzebeständigkeit und mechanische Eigenschaften, um eine kluge Wahl zu treffen.
  • Verarbeitungsparameter: Für eine gleichbleibende Qualität und eine bessere Produktionseffizienz ist es entscheidend, Faktoren wie Temperatur und Einspritzdruck im Auge zu behalten.
  • Formmaschinen: Um Probleme bei der Verarbeitung zu vermeiden, sind für PPS konzipierte Hochleistungsmaschinen erforderlich.
PPSU-Spritzgießen

PPSU-Spritzgießen

Anwendungen des Präzisions-PPS-Spritzgusses:

Präzisions-PPS-Spritzguss finden Sie in vielen Branchen, in denen hohe Leistung erforderlich ist:

Hier sind einige gängige Beispiele:

  • Automobilindustrie: Aufgrund seiner Hitze- und Chemikalienbeständigkeit wird es in Teilen wie Motorabdeckungen und Verbindungsstücken verwendet.
  • Elektronik: Nützlich bei Komponenten wie Leiterplatten und Gehäusen, bei denen es auf elektrische Isolierung ankommt.
  • Luft- und Raumfahrt: Leichte Motorteile und Strukturkomponenten sind auf seine Hochtemperaturbeständigkeit angewiesen.
  • Chemische Verarbeitung: Dank seiner hohen chemischen Beständigkeit wird es in Ventilen und Pumpen verwendet.
  • Medizinische Geräte: Wird in chirurgischen Instrumenten und Implantaten verwendet, bei denen Sterilität und Biokompatibilität von entscheidender Bedeutung sind.
  • Konsumgüter: Denken Sie an Elektrogeräte und Sportgeräte.
  • Industrielle Ausrüstung: Wie Pumpen, Ventile, Zahnräder und Lager.

Vorteile des Präzisions-PPS-Spritzgusses:

Die Verwendung von Präzisions-PPS-Spritzguss bietet zahlreiche Vorteile – es ist eine kluge Wahl für die Herstellung hochwertiger Kunststoffteile! Schauen wir uns diese Vorteile an:

  1. Verbesserte Leistung: PS-Teile glänzen in schwierigen Umgebungen, weil sie superstark sind!
  2. Haltbarkeit und Langlebigkeit: Diese Komponenten sind äußerst verschleißfest und können sehr lange halten!
  3. Präzision und Genauigkeit: Dank dieser Methode werden Teile mit hervorragenden Toleranzen hergestellt, die strengen Qualitätskontrollen standhalten!
  4. Vielseitigkeit: Sie können PPS problemlos in alle möglichen komplexen Designs bringen!
  5. Wirtschaftlichkeit: Es ist oft günstiger als die Verwendung anderer Materialien oder Methoden und bietet dennoch eine hervorragende Leistung!

Überlegungen zum Formen:

Beachten Sie beim Formen Folgendes:

  1. Die Formtemperatur beeinflusst Festigkeit und Kristallinität.
  2. Die Einspritzgeschwindigkeit verändert die Produktqualität und die Zykluszeit.
  3. Eine gute Formentlüftung verhindert Probleme wie Lufteinschlüsse.
  4. Achten Sie auf Konstruktionsmerkmale wie Entformungsschrägen!

Vorteile und Nachteile von PPS-Spritzgussformen:

Hier sind einige Vorteile:

  • Hohe Hitzebeständigkeit
  • Gute chemische Beständigkeit
  • Starke mechanische Eigenschaften
  • Hohe Dimensionsstabilität
  • Hervorragende elektrische Eigenschaften
  • Flammhemmend
  • Hydrolytische Stabilität
  • Produziert wenig Rauch
  • Sicher für den Kontakt mit Lebensmitteln

Nun die Nachteile:

  • Teurer als einige andere Kunststoffe
  • Kann schwierig zu verarbeiten sein
  • Weniger Farbauswahl

Wenn Hersteller diese Punkte im Hinterkopf behalten, können sie beim Einsatz des PPS-Spritzgussverfahrens kluge Entscheidungen treffen, um Produkte mit hervorragender Leistung und langer Lebensdauer zu erhalten!

Abschluss:

Zusammenfassend lässt sich sagen, dass das Präzisions-PPS-Spritzgießen dabei hilft, Hochleistungskunststoffteile herzustellen, die den hohen Anforderungen der Industrie gerecht werden! Es nutzt die einzigartigen Stärken von PPS zusammen mit präzisen Techniken und schafft so Komponenten, die sich durch thermische Stabilität, chemische Beständigkeit, Haltbarkeit und Festigkeit auszeichnen.

Da Unternehmen versuchen, schnell auf neue Marktanforderungen zu reagieren, ist präzises PPS-Spritzgießen für die Bereitstellung von Produkten höchster Qualität unverzichtbar! Indem sie die Vorzüge von PPS in Kombination mit erfahrenen Spritzgusstechniken nutzen, können Unternehmen die Produktleistung steigern und sich gleichzeitig Vorteile auf dem heutigen schnelllebigen Markt verschaffen.

5 häufig gestellte Fragen zum PPS-Spritzguss:

1. Können PPS-Spritzgussteile lackiert werden?

Ja, PPS-Formteile können lackiert oder mit Teppich ausgelegt werden. Dennoch ist eine ordnungsgemäße Oberflächenbehandlung entscheidend, um Haftung und Kontinuität sicherzustellen.

Nachfolgend sind einige gängige Arten zum Ölen oder Beschichten von PPS-Spritzgussteilen aufgeführt:

Chemisches Ätzen: Durch diesen Vorgang entsteht auf dem PPS eine raue Oberfläche, die eine bessere mechanische Haftung für Beschichtungen bietet.

Honigbehandlung: Durch das Auftragen von Honig auf die PPS-Oberfläche kann eine mikroporöse Unterschicht entstehen, die die Haftung verbessert.

Koronaentladung: Dieses System modifiziert die Oberflächenpartikel des PPS durch elektrische Entladung und verbessert so die Haftung der Beschichtung.

Rohrbehandlung: Analog zur Nimbus-Entladung kann eine Rohrbehandlung die Oberflächenenergie verbessern und die Beschichtungshaftung fördern.

2. Worauf sollte bei der Gestaltung von Formen für PPS-Kunststoff-Spritzgussmaterial geachtet werden?

Zu den wichtigsten Punkten gehören:

  1. Die Platzierung des Gates hat großen Einfluss auf die Qualität.
  2. Effiziente Kühlkanäle helfen dabei, den Produkten die richtige Form zu geben.
  3. Eine gute Entlüftung verhindert die Entstehung von Defekten.
  4. Die Formmaterialien müssen den Anwendungsanforderungen entsprechen.

3. Welche Herausforderungen können beim PSE-Spritzguss auftreten?

Einige Herausforderungen können sein: – Härtere Materialverarbeitung aufgrund höherer Temperaturen, möglicherweise sind spezielle Maschinen erforderlich. Die Kosten können im Vorfeld höher sein, aber später lohnt es sich oft.

4. Wie trägt PSE-Spritzguss zur Nachhaltigkeit bei?

Es hilft durch:

– Weniger Abfall, da diese Teile länger halten und seltener ausgetauscht werden müssen!

– Verbesserung der Energieeffizienz durch die Bewältigung hoher Temperaturen ohne den Bedarf an massiver Heizung/Kühlung!

– Unterstützung von Recyclingbemühungen, die den Bedarf an neuen Ressourcen reduzieren!

Präzisions-Kunststoffspritzguss

5.Wie kann PPS in der additiven Fertigung eingesetzt werden?

PPS in der additiven Fertigung: PPS ist aufgrund seiner hervorragenden Hitzebeständigkeit, chemischen Beständigkeit und mechanischen Eigenschaften ein vielversprechendes Material für die additive Fertigung (AM). Obwohl es aufgrund seines hohen Schmelzpunkts und seiner Wärmeleitfähigkeit einige Herausforderungen mit sich bringt, können mehrere AM-Methoden zum Wiederverwenden von PPS verwendet werden. Ray Greasepaint Bed Fusion (LPBF) Eine der gängigsten Methoden zum Recycling von PPS ist LPBF. Bei diesem Verfahren schmilzt und verschmilzt ein Strahl pulverförmiges PPS Teil für Teil, um das gewünschte Teil herzustellen. LPBF ermöglicht komplexe Formen und hochwertige Korridore.

Fused Filament Fabrication (FFF): FFF, auch als 3D-Druck bekannt, kann zur Wiederverwendung von PPS-Fasern verwendet werden. Aufgrund des hohen Schmelzpunkts von PPS sind jedoch spezielle Düsen und beheizte Kammern erforderlich. FFF eignet sich für Prototypen und Kleinserienprodukte des PPS-Korridors.

Additive Fertigung durch Materialextrusion (MEAM)): MEAM ist analog zu FFF, verwendet jedoch Fasern oder Kugeln mit größerem Umfang. Mit diesem Verfahren können größere PPS-Korridore mit besserer Maßgenauigkeit erzeugt werden.

 Stereolithografie (SLA): Bei SLA wird ein Strahl in ein flüssiges Harzbad projiziert, wodurch das PPS-Material Schicht für Schicht ausgehärtet wird. Obwohl PPS aufgrund seines hohen Schmelzpunkts kein gängiges Material für SLA ist, können einige technische Harze und Nachbearbeitungsverfahren verwendet werden.

Herausforderungen und Überlegungen:

Nachbearbeitung: AM-produziertes PPS-Material kann Nachbearbeitungsverfahren wie Glühen oder maschinelle Bearbeitung durchlaufen, um die gewünschten Abmessungen und Haltbarkeit zu erreichen. Trotz dieser Herausforderungen bietet PPS erhebliche Möglichkeiten für die Massenfertigung. Aufgrund seiner Hochleistungseigenschaften eignet es sich für Anwendungen in der Luft- und Raumfahrt, der Automobilindustrie und anderen Industriezweigen, die langlebige und hitzebeständige Eigenschaften erfordern.

Wir haben mit vielen Arten von PPS-Spritzgussteilen gearbeitet PPSU-Spritzguss, PEEK-Spritzguss und andere Arten von Kunststoffen, wenn Sie ein Projekt haben, das braucht PPS Spritzgussprodukte. Kontaktieren Sie uns bitte, wir nennen Ihnen den besten Preis.