What is PA6 GF30
People are continuously looking for more flexible and durable materials. PA6 GF30 plastic is a prime example of this type of material, many of nylon injection molding parts are made by PA66 GF30 plastic material. It has been employed in various industries since 1930 and is an adaptable solution for everything from automotive parts to consumer goods.
So, why is there such demand for PA6 GF30? First, this material is incredibly stronger than typical polymers. Second, it is durable and lasts over 40 to 50 years, depending on the favorable conditions. Engineers typically prefer this material due to its ability to withstand heavy loads. Besides, 30% glass fiber makes this material stiffer and more robust than typical PA6.
In today’s fast-paced world, PA6 GF30 stands out. It meets the ever-growing need for lightweight, strong materials that can endure harsh conditions. Industries are constantly looking for solutions that are both effective and efficient. The PA6 GF30 meets most of their requirements!
The need for products like PA6 GF30 only grows as technology improves. What you need to know about glass-filled nylon 6 is in this text. You will also learn about the different kinds of PA6 GF30 and how they are different. This article is especially useful for people who make products, sell them, or are interested in business.
What Is PA6 GF30 Material?
PA6 GF30 plastic is one of the most common types of glass-filled nylon-6 category. The name has two terms, “PA6” and “GF30”. Go to is nylon safe and glass filled nylon injection molding page to know more.
PA6 stands for Poly-Amide, a type of nylon. Specifically, PA6 GF30 is a special type of nylon reinforced with glass fibers. If you look into a “PA6” chemical structure, you will find a caprolactam polymer. However, the “GF30” term indicates that the material’s 30% typically comes from glass fibers.
Engineers and developers prefer the PA6 GF30 because it is strong and durable. The polycaprolactam structure normally provides mechanical properties and wear resistance. On the other hand, the glass fibers improve the strength and stiffness of the nylon. As a result, PA6 GF30 is much stronger than typical PA6. FYI: the added glass fibers generally help the material resist deformation. Also, it improves the performance of the PA6 GF30 material under high stress.
Glass-filled nylon 6 offers more strength than typical PA6. This is why people prefer glass-filled nylon-6 over standard PA6 material. PA 6 materials are often used in textile and consumer products. On the other hand, PA6 GF30 is a preferred choice for car and electronics industry. You may usually find its use in making housings, brackets, and structural parts.
Properties & Benefits of A PA6 GF30 Glass Fiber
The unique structure of glass-filled nylon-6 offers a wide range of benefits over typical PA6. The addition of 30% glass fiber is mainly responsible for all these superior properties. Because of these, the PA6 GF30 part is widely prevalent in many industries.
In this section, you will specifically review each property and learn why glass-filled nylon 6 is a suitable material.
Improved Mechanical Properties
PA6 GF30 plastic offers superior tensile strength. Since this material uses glass fiber, you must count two tensile strength values. First, the tensile strength along the fiber is 175 MPa. Second, the tensile strength perpendicular to the fiber is 110MPa. On the other hand, the standard PA6 offers only 79 MPa. Glass-filled nylon-6 offers the superior tensile strength.
PA6 GF30 plastic parts additionally provide superior stiffness performance. PA6 GF30 material has a 1.36 g/cm³ density, higher than ordinary PA6’s 1.14 g/cm³. As a result, PA6 GF30 is well-suited to applications requiring rigidity and stability.
Also, glass-filled nylon-6 material is harder than standard PA6 material. In general, PA6 GF30 offers hardness D86 along the fiber and D83 perpendicular to the fiber. However, PA6 offers less hardness, which is D79. As a result, PA6 GF30 is ideal for high-impact applications.
Finally, the glass-filled material provides a lower creep rate. The creep rate is generally how fast the material changes shape under constant pressure. Note that a material is more stable if its creep rate is low. Similar situations can be observed in PA6 GF30 material. Also, this nylon is great for high-load applications due to its superior stability over time.
Thermal Properties of PA6 GF30
PA6 GF30 also offers outstanding thermal properties. One of its key advantages is having a lower thermal expansion rate. Glass-filled nylon-6 offers expansion from 23 to 65 per 10⁻⁶/K. Compared to PA6, it’s much lower than 12 to 13 per 10⁻⁵/K.
These values show that the PA6 GF30 material expands or contracts very little with temperature changes. Because of this, PA6 GF30 is reliable in many applications.
Another important feature is its higher stability when exposed to temperature changes. PA6 GF30 remains stable even in frequent temperature changes. However, PA6 can not offer this much stability. Therefore, PA6-GF30 is widely used in the automotive and industrial settings.
The PA6-GF30 part also offers high heat resistance. It generally works smoothly in temperatures ranging from -40 to 220 degrees (C), while PA only provides up to 150 degrees(C). Therefore, PA6-GF30 offers a higher temperature rating than conventional PA6 material. Because of this, glass-filled nylon-6 is ideal for engine components and electronic housings.
Moreover, you can also consider high static loads in high temperatures. A static load is a constant or unchanged load applied to a body. The PA6-GF30 parts can withstand high static loads even in high temperatures. These particular benefits make this material prevalent in aerospace and many industrial applications.
Mechanical Damping and Fatigue Strength
PA6 GF30 material is also excellent in both fatigue and mechanical damping. An excellent fatigue strength means the material can withstand repeated loads without failing. In many applications, the machine often faces cyclic stresses. In this case, a PA6 GF30 material could be an ideal choice.
Mechanical damping, however, refers to the efficiency with which your substance absorbs vibrations. This feature is appropriate for vibration-related applications. When the vibration occurs, the PA6-GF30 part releases energy and reduces noise and wear.
Now, consider combining these two features in one material. The PA6-GF30 part comes in handy for this.
Chemical Properties of PA6 GF30
As you know, the PA6-GF30 plastic material has 30% glass fiber. This combination improves many properties, including chemical properties. Because of the addition of glass fiber, the PA6-GF30 part becomes more chemical resistant.
In general, it can resist oils, greases, and solvents. However, it may not be suitable for strong acids and bases. Therefore, it is mostly resistant to petroleum-based chemicals. Because of this, this material is widely used in automotive and many industrial applications.
Another excellent property of PA6-GF30 is aging and wear resistance. This material maintains its performance over time, even in harsh environments. It doesn’t easily break down when exposed to UV light or moisture, contributing to the part’s lifespan.
Electrical Properties of PA6 GF30
Finally, introducing glass fibers enhances the electrical characteristics of PA6-GF30 plastic material. This material offers electrical insulation of 1E12 to 1E10 Ω, whereas PA6 only possesses 1E14 Ω. You can see that the standard PA6 material provides higher insulation than PA6-GF30.
Regarding dielectric strength, the PA6 material also offers a better result. PA6-GF30 plastic material provides strength from 5 to 12 kV/mm, while PA6 offers a higher value of only 32kV/mm. Although the value of glass-filled nylon-6 is lower, it still ensures higher insulation.
Other Advantages of PA6 GF30
A PA6-GF30 offers other benefits in addition to the above. The following three benefits are most important to your business interests.
Cost-Effectiveness
PA6 GF30 offers a cost-efficient solution compared to metals. It maintains excellent mechanical performance while reducing material expenses. Because of this, glass-filled nylon-6 is a great choice for businesses that want to save money without lowering the quality of their products.
Lightweight Alternative to Metals
One great thing about PA6 GF30 is that it is very light. Even though it’s not as heavy as metal, it’s still very strong. This material is especially necessary for applications that require more fuel efficiency. Typical applications can be observed in the automation and aerospace industries.
Corrosion Resistance
Unlike metals, the PA6-GF30 part does not rust. As a result, this material can be a great alternative to metal. It offers a longer lifespan in corrosive settings. Because of this, you don’t have to necessarily replace parts frequently. This particular benefit is especially necessary for outdoor and chemical applications.
Limitations Of PA6 GF30 Material
Although PA6 GF30 plastic offers many benefits, it does have some limitations. One of the main drawbacks is its brittleness compared to pure PA6. The addition of 30% glass fiber makes it less flexible. Because of this, PA6-GF30 material is not suitable for applications involving bending. This reduced flexibility may cause cracking under heavy loads.
One more problem is that it tends to soak up water. The PA6-GF30 part can hold water, just like all polyamides. This water absorption can make polyamide weaker or less stiff. It could also change how long the product lasts in general. You can use special coatings to overcome these problems.
How Is PA6 GF30 Part Made?
PA6-GF30 plastic is a very tough and durable material. The addition of 30% glass fiber generally makes the material even stronger. Making this material requires several steps, each critical to ensuring its quality. This section will take you through the entire process, from material selection to the final product.
Despite knowing the whole process, learning about quality control is equally important. These formalities are carefully maintained in every factory. Renowned factories, like sincere tech, always use various tools to monitor material quality at every stage. Even after the production, they use various testing machines to guarantee the quality.
Step #1: Material Selection
The first step in creating a PA6-GF30 part is obtaining the appropriate raw materials. As the name says, polyamide 6 (PA6) is the major component. We already discussed this sort of nylon, which is prevalent for its strength, flexibility, and resilience.
The secondary material is glass fibers, which will be necessary to reinforce the nylon later. For the PA6-GF30 part, the glass fiber content makes up 30% of the total material weight. This balance generally offers the benefits we have mentioned in the previous section.
The whole process is critical in making the glass-filled nylon-6 material. Adding glass fibers requires the proper addition techniques to ensure the best quality product.
The factories first source high-quality PA6 granules and chopped glass fibers. This step is critical to ensuring that high-quality raw materials are used to guarantee the quality of the final products. Factories may also use other additives to improve the UV, flame, or heat resistance.
Step #2: Polymerization of PA6
Once raw materials are selected, they are sent to the polymerization chamber. Polymerization is a process that creates a polymer chain from monomers. Regarding PA6-GF30, the caprolactam monomers are polymerized to form long polyamide molecules.
A reactor heats the caprolactam so that the polymerization process can happen. Inside the reactor, it can get as hot as 250 degrees Celsius. The high temperature creates a chemical process that lets the monomers join together to form a long chain of PA6 polymers.
During this time, water and other residuals from the material are removed. It ensures the polymer is pure and has the desired properties. Next, the process cools the newly formed polyamide and creates small granules or pellets. Later, the process takes out these pellets to another chamber for the next step of production.
Step #3: Compounding the PA6 and Glass Fiber
Once the PA6 is polymerized, the process adds the glass fibers to the material. This adding process is generally called compounding. The newly formed polyamide is melted at 240 to 270 degrees Celsius in this step.
The process then mixes the chopped glass fibers into the molten PA6. It uses a twin-screw extruder to do this, which ensures that the glass fibers are evenly distributed throughout the polymer.
The compounding stage is one of the most critical stages. In this process, the materials generally gain higher strength and performance capabilities. Therefore, every factory must carefully control this process to avoid damaging the glass fibers.
Step #4: Cooling and Pelletizing
After the mixing step, the hot glass-filled nylon-6 needs to be cooled down. This process requires a room for cooling. Air or water cooling may be available, but people often prefer air-cooling systems. The molten nylon-6 with glass hardens when it cools down and makes pallets. That’s why this process is known as pelletizing.
The PA6-GF30 pellets are now ready for molding into parts. They are packed and stored or immediately sent to the next stage of the manufacturing process.
Step #5: Processing into Parts
The final step is to create the real PA6-GF30 component. Injection and extrusion are two prominent methods for producing various glass-filled nylon-6 products. The appropriate kind is often determined by the complexity of the part you wish to manufacture.
The injection molding procedure is often appropriate for complicated parts. During this step, the PA6 GF30 is melted and pressed into a mold, which forms the material into the desired shape. Once cooled, the item is released from the mold. Finally, following testing, the PA6-GF30 part is ready for use in the intended application.
The extrusion process, on the other hand, is ideal for producing simple parts. It produces lengthy profiles with equal cross-sectional area. In this scenario, an extrusion machine is utilized. The process begins with feeding the hopper. The machine then warms the feed PA6-GF30 pallets until they melt into liquid. Later, the molten glass-filled nylon-6 is pushed through a die. The PA6-GF30 part gets long and continuous parts. Later, you can cut them into the desired length.
Finally, the newly created PA6-GF30 part is sent for quality checks. That’s when the factories prepare the necessary certifications.
Application of PA6-GF30 Part
You are now familiar with the PA6 GF30 material and its manufacturing process. You are also now familiar with its wide range of benefits. Because of these benefits, this material is widely used in many industries.
The Polyamide market has been in high demand for the last ten years. According to various market research, this size is worth 8.3 billion USD. It is expected to grow at a CAGR rate of 6% and will turn 14.26 billion USD in 2031.
Automotive Industry
The car industry widely uses glass-filled materials to create various automotive parts. Some common parts include:
- Engine Covers
- Air Intake Manifolds
- Pedal Boxes
- Radiator End Tanks
- Hood bonnet
- Car wiper
- Driving wheel
- Bicycle handle
Electrical and Electronics
Also, in the electronic industry, the PA6-GF30 part is prevalent. Some common electrical parts include:
- Cable Glands
- Switch Housings
- Circuit Breaker Components
- Electrical Connectors
- Power tool shell
- Fan blade
- Connector
- Socket, fuse box, terminal chips, and many more.
Consumer Goods
Consumer goods are also no exception. PA6-GF30 part strength, impact resistance, and heat tolerances greatly benefit these products.
- Vacuum Cleaner Housings
- Power Tool Casings
- Washing Machine Parts
Industrial Equipment
In industrial applications, PA6-GF30 became a great alternative to metal parts. Some common parts include:
- Pump Housings
- Valve Bodies
- Gear Wheels
- Bearing Bushes
Aerospace Industry
The lightweight nature, durability, and strength of the PA6 GF30 material make it an ideal option in the aerospace industry.
- Interior Panels
- Bracket Supports
- Cable Clamps
Medical Devices
You can also find its use in medical devices as well. Since PA6 GF30 material doesn’t rust, this material is ideal for use in medical devices. Some common components include:
- Surgical Instrument Handles
- Diagnostic Equipment Housings
- Medical Device Casings
PA6 GF30 VS PA6.6-GF30: What’s the difference?
PA6 GF30 and PA6.6-GF30 palstic are nylon materials reinforced with 30% glass fiber. What makes them different is the use of varying nylon polymers. PA6 uses nylon 6, while PA6.6 uses nylon 6.6.
PA6-GF30 material is a popular type of nylon-6 material. You have already learned about this material in the previous few sections. It is strong, lightweight, and highly resistant to temperature.
PA6.6-GF30, on the other hand, offers better properties than PA6 GF30 material. Its melting point is higher, around 260 degrees Celsius. Therefore, it provides better heat resistance and mechanical strength at high heat.
PA6.6-GF30 material is also prevalent in automotive or electrical sections. It exhibits better wear resistance and lower moisture absorption, making it widely prevalent in extreme weather conditions.
What makes PA6 GF30 better than PA6.6-GF30 material is the cost. The production cost of PA6.6-GF30 is often higher. The complex manufacturing process usually increases the price. As a result, PA6-GF30 parts are commonly used in various applications.
Frequently Asked Questions
What Material Is PA6 GF30 Similar To?
Generally, PA6 GF30 provides similar properties as PA6 or Nylon 6 material. Although, PA6-GF30 material is the superior option than PA6. However, you may also find some similarities with polycarbonate and ABS plastic. These materials also practically show similar characteristics.
Is PA6 Stronger Than PA12?
Indeed, PA6 is stronger than PA12. Several reasons exist, but the most crucial are the high tensile strength and stiffness. However, PA12 is better for impact resistance and flexibility. So, the choice between these two Nylons depends on specific use. For example, if you need better structural support, go for PA6.
Does PA6 Absorb Water?
Yes, PA6 absorbs water. Although the absorption rate is different, both PA6 and PA6.6 do. PA6’s water absorption rate is 9%, while PA6.6’s is 7%.
Is PA6 Amorphous or Crystalline?
PA6 is a primarily semi-crystalline polymer with both crystalline and amorphous regions. However, the crystalline structure dominates the most. Because of this, this material provides excellent strength and a higher melting point.
Can PA6-GF30 Be Recycled?
Yes, PA6-GF30 can be recycled, although the process can be complex. Recycling generally involves grinding the material into pellets, which can then be reprocessed. Note that the presence of glass fiber may affect the quality of the recycled product.
Summary
PA6 GF30 is a nylon-6 material reinforced with 30% glass fibers. Adding glass typically improves strength, stiffness, and thermal properties. Compared to PA6, this glass-filled nylon-6 is a better option. Also, the PA6-GF30 part offers higher mechanical performance, making it an ideal choice for many applications.
Compared to PA6.6 GF30, PA6-GF30 is more cost-effective. However, if you are looking for better performance, it is wise to choose PA6.6-GF30 material. Note that both absorb moisture from 7% to 9%, although you can use coatings to avoid absorption.
PA6-GF30 material is widely used in cars, electrical equipment, and consumer goods. Popular products include hood bonnets, car wipers, driving wheels, connectors, sockets, and fuse.
If you need a custom plastic parts solution, don’t hesitate to contact us. Our team of experts is always happy to help.
Leave a Reply
Want to join the discussion?Feel free to contribute!